Determination of positive stable realizations for discrete-time linear systems

Tadeusz Kaczorek
Faculty of Electrical Engineering, Białystok University of Technology, Białystok, Poland

Abstract: Sufficient conditions for the existence of positive stable realizations for given proper transfer matrices are established. Two methods are proposed for determination of the positive stable realizations for given proper transfer matrices. The effectiveness of the proposed procedures is demonstrated on numerical examples.

Keywords: determination, positive, stable, discrete-time

1. Introduction

A dynamical system is called positive if its trajectory starting from any nonnegative initial state remains forever in the positive orthant for all nonnegative inputs. An overview of state of the art in positive theory is given in the monographs [2, 6]. Variety of models having positive behavior can be found in engineering, economics, social sciences, biology and medicine, etc.

An overview on the positive realization problem is given in [1, 2, 6]. The realization problem for positive continuous-time and discrete-time linear systems has been considered in [3, 4, 7, 10, 11] and the positive minimal realization problem for singular discrete-time systems with delays in [12]. The realization problem for fractional linear systems has been analyzed in [8, 13] and for positive 2D hybrid systems in [9]. The existence of positive stable realizations with system Metzler matrices for continuous-time and discrete-time linear systems has been investigated in [13, 14].

In this paper sufficient conditions will be established for the existence of positive stable realizations for given proper transfer matrices and two methods for determination of the positive stable realizations of proper transfer matrices will be proposed.

The paper is organized as follows. In section 2 some definitions and theorems concerning positive discrete-time linear systems are recalled and the problem formulation is given. In section 3 two methods for determinations of positive stable realizations for given transfer functions are proposed. An extension of the method 1 to multi-input multi-output discrete-time linear systems is proposed in section 4. Concluding remarks and open problems are given in section 5.

The following notation will be used: \mathbb{R} - the set of real numbers, $\mathbb{R}^{n\times n}$ - the set of $n \times n$ real matrices, $\mathbb{R}^{n\times m}$ - the set of $n \times m$ matrices with nonnegative entries and $\mathbb{R}^{n\times m}(z)$ - the set of $n \times m$ real matrices in z with real coefficients, $\mathbb{R}^{n\times m}[z]$ - the set of $n \times m$ polynomial matrices in z with real coefficients, I_n - the $n \times n$ identity matrix.

2. Preliminaries and the problem formulation

Consider the discrete-time linear system

\[
\begin{align*}
 x_{i+1} &= A x_i + B u_i, \quad i \in \mathbb{Z}_+ \\
 y_i &= C x_i + D u_i
\end{align*}
\]

(2.1a)

(2.1b)

where $x_i \in \mathbb{R}_n^+$, $u_i \in \mathbb{R}_m^+$, $y_i \in \mathbb{R}_r^+$ are the state, input and output vectors and $A \in \mathbb{R}^{n\times n}$, $B \in \mathbb{R}^{n\times m}$, $C \in \mathbb{R}^{r\times n}$, $D \in \mathbb{R}^{r\times m}$.

Definition 2.1. The system (2.1) is called (internally) positive if $x_i \in \mathbb{R}_n^+$, $y_i \in \mathbb{R}_r^+$, $i \in \mathbb{Z}_+$ for any initial conditions $x_0 \in \mathbb{R}_n^+$ and all inputs $u_i \in \mathbb{R}_m^+$, $i \in \mathbb{Z}_+$.

Theorem 2.1. [1, 6] The system (2.1) is positive if and only if

\[
A \in \mathbb{R}^{n\times n}_+, B \in \mathbb{R}^{n\times m}_+, C \in \mathbb{R}^{r\times n}_+, D \in \mathbb{R}^{r\times m}_+.
\]

(2.2)

The transfer matrix of the system (2.1) is given by

\[
T(z) = C [I_z - A]^+ B + D.
\]

(2.3)

The transfer matrix is called proper if

\[
\lim_{z \to -1} T(z) = K \in \mathbb{R}^{r\times n}_+
\]

(2.4)

and it is called strictly proper if $K = 0$.

Definition 2.2. Matrices (2.2) are called a positive realization of transfer matrix $T(z)$ if they satisfy the equality (2.3).

The positive system (2.1) is called asymptotically stable (shortly stable) if

\[
\lim_{z \to -1} x_i = 0 \quad \text{for all initial conditions } x_0 \in \mathbb{R}_n^+.
\]

(2.5)

Theorem 2.2. [1, 6] The positive system (2.1) is asymptotically stable if and only if all coefficients of the polynomial

\[
p(z) = \det(I_z (z + 1) - A) = z^k + a_{k+1} z^{k+1} + \ldots + a_k z + a_0
\]

(2.6)

are positive, i.e. $a_k > 0$ for $k = 0, 1, \ldots, n - 1$.

The problem under considerations can be stated as follows. Given a rational matrix $T(z) \in \mathbb{R}^{r\times n}_+$, find a positive stable its realization (2.2).

In this paper sufficient conditions for the existence of positive stable realization (2.2) of a given $T(z) \in \mathbb{R}^{r\times n}_+$ will be established and procedures for determination of positive stable realizations (2.2) will be proposed.
3. Problem solution for single-input single-output systems

3.1. Method 1

Consider the positive single-input single-output (SISO) system (2.1) with the transfer function

\[T(z) = \frac{b_0 z^0 + b_1 z^1 + \ldots + b_n z^n}{z^n - a_0 z^{n-1} - \ldots - a_n} \] \hspace{1cm} (3.1)

For given (3.1) we can find the matrix \(D \) by the use of the formula [6]

\[D = \lim_{z \to \infty} T(z) = b_n \] \hspace{1cm} (3.2)

and the strictly proper transfer function

\[T_o(z) = T(z) - D = C[I_z - A]^{-1}B \]

\[= \frac{\bar{b}_0 z^{-1} + \ldots + \bar{b}_k z^{-k}}{z^n - a_0 z^{n-1} - \ldots - a_n} = n(z) \] \hspace{1cm} (3.3)

where

\[\bar{b}_k = b_k + a_k b_n, \quad k = 0, 1, \ldots, n-1. \] \hspace{1cm} (3.4)

Note that if \(b_k \geq 0 \) for \(k = 0, 1, \ldots, n \) and \(a_k \geq 0 \) for \(k = 0, 1, \ldots, n-1 \) then \(\bar{b}_k \geq 0 \) for \(k = 0, 1, \ldots, n-1 \).

Theorem 3.1. There exists a positive stable realization of the form

\[A = \begin{bmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \\ a_0 & a_1 & a_2 & \ldots & a_{n-1} \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} \bar{b}_0 & \bar{b}_1 & \bar{b}_2 & \ldots & \bar{b}_{n-1} \end{bmatrix}, \quad D = [b_n]. \] \hspace{1cm} (3.5a)

of (3.1) if the following conditions are satisfied

1) \(a_k \geq 0 \) for \(k = 0, 1, \ldots, n-1 \), \hspace{1cm} (3.6a)

2) \(b_k \geq 0 \) for \(k = 0, 1, \ldots, n \), \hspace{1cm} (3.6b)

3) \(a_0 + a_1 + \ldots + a_n < 1 \). \hspace{1cm} (3.6c)

Proof. If the conditions (3.6a) and (3.6b) are met then \(A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^n, \quad C \in \mathbb{R}^{1 \times n}, \quad D \geq 0 \). By Theorem 2.2 the realization (3.5) is stable if and only if all coefficients of the polynomial

\[\det[I_z (z + 1) - A] = (z + 1)^n - a_{n-1}(z + 1)^{n-1} - \ldots - a_0(z + 1) - a_0 \]

\[+ (1 - a_0 - \ldots - a_{n-1})z \] \hspace{1cm} (3.7)

are positive, i.e.

\[1 - a_{n-1} - \ldots - a_0 - a_0 > 0 \]

\[n - a_{n-1}(n - 1) - \ldots - a_0 > 0 \]

\[\vdots \]

\[n - a_0 > 0 \] \hspace{1cm} (3.8)

Note that the conditions (3.8) are satisfied if (3.6c) is met. Using (3.5) and (2.3) we obtain

\[T(z) = C[I_z - A]^{-1}B + D \]

\[= \begin{bmatrix} \bar{b}_0 & \bar{b}_1 & \bar{b}_2 & \ldots & \bar{b}_{n-1} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + b_n \]

\[= \begin{bmatrix} \bar{b}_0 & \bar{b}_1 & \bar{b}_2 & \ldots & \bar{b}_{n-1} \end{bmatrix} \frac{1}{z^n - a_0 z^{n-1} - \ldots - a_n} \]

\[= \frac{\bar{b}_0 z^{-1} + \ldots + \bar{b}_k z^{-k}}{z^n - a_0 z^{n-1} - \ldots - a_n} + b_n \]

\[= \frac{b_0 z^{-1} + \ldots + b_k z^{-k}}{z^n - a_0 z^{n-1} - \ldots - a_n} \]

(3.9)

This completes the proof.

If the conditions (3.6) are met then the positive stable realization (3.5) can be computed by the use of the following procedure.

Procedure 3.1.

Step 1. Using (3.2) find the matrix \(D \) and the strictly proper transfer function (3.3).

Step 2. Using (3.5) find the matrices \(A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^n, \quad C \in \mathbb{R}^{1 \times n} \).

Example 3.1. Using Procedure 3.1 find the positive stable realization of the transfer function

\[T(z) = \frac{2z^3 + 3z^2 + z + 2}{z^3 - 0.7z^2 - 0.1z - 0.08} \] \hspace{1cm} (3.10)

The transfer function (3.10) satisfy the conditions (3.6)

\[a_0 = 0.08, \quad a_1 = 0.1, \quad a_2 = 0.7, \quad b_1 = 2, \quad b_2 = 3, \quad b_3 = 1, \quad b_0 = 2 \quad \text{and} \quad a_0 + a_1 + a_2 = 0.88 < 1. \]

Step 1. Using (2.2) for (3.3) we obtain

\[D = \lim_{z \to \infty} T(z) = 2 \] \hspace{1cm} (3.11)

and the strictly proper transfer function

\[T_o(z) = T(z) - D = \frac{2z^3 + 3z^2 + z + 2}{z^3 - 0.7z^2 - 0.1z - 0.08} - 2 \]

\[= \frac{4.4z^2 + 1.2z + 2.16}{z^3 - 0.7z^2 - 0.1z - 0.08} \] \hspace{1cm} (3.12)

Step 2. Using (2.3) for (3.5) we obtain

\[A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.08 & 0.1 & 0.07 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad C = [2.16 \quad 1.2 \quad 4.4], \quad D = [2]. \] \hspace{1cm} (3.13)

The realization (3.13) is asymptotically stable since the condition (3.6c) is met. The poles of (3.10) are:

\[z_1 = 0.9074, \quad z_2 = -0.1037 + j0.282, \quad z_3 = -0.1037 - j0.282. \]

Remark 3.1. In a similar way as in the proof of Theorem 3.1 it can be shown that the following matrices are also the positive stable realizations of (3.1):
and the assumption 3) implies

\[
\frac{1}{z - z_i} T_w(z) = \frac{n(z_j)}{\prod_{i=1}^{n} (z_i - z_j)}
\]

(3.19b)

with \(c_k \geq 0, k = 1, \ldots, n \).

3) The coefficient \(b_n \) of (3.1) is nonnegative.

Proof. If the condition 1) is met then \(A \in \mathbb{R}_+^{n \times n} \) is asymptotically stable. If by assumption 2) \(c_j \geq 0, k = 1, \ldots, n \) then \(C \in \mathbb{R}_+^{n \times m} \) and the assumption 3) implies \(D \in \mathbb{R}_+^n \).

Using (3.18) we obtain

\[
C[I_n - A]^{-1}B + D
\]

\[
= [c_1 \ldots c_n]
\]

\[
\begin{bmatrix}
1 \\
0 \\
\vdots \\
0 \\
\end{bmatrix} + b_n
\]

(3.20)

\[
= \sum_{i=1}^{n} \frac{c_i}{z - z_i} + b_n = T(z)
\]

Therefore, the conditions 1), 2) and 3) are satisfied and there exists a positive stable realization of the transfer function (3.1). \(\square \)

If the assumptions of Theorem 3.2 are satisfied then the positive stable realization (3.18) can be computed by the use of the following procedure.

Procedure 3.2.

Step 1. Using (3.2) find the matrix \(D \) and the strictly proper transfer function (3.3).

Step 2. Using formula (3.19) find \(c_k \) for \(k = 1, \ldots, n \).

Step 3. Find the desired realization (3.18).

Example 4.1. Find a positive stable realization (3.18) of the transfer function

\[
T(z) = \frac{4z^2 - 3.9z + 0.94}{z^3 - 1.5z^2 + 0.74z - 0.12}
\]

(3.21)

The poles of (3.21) are \(z_1 = 0.4, z_2 = 0.5, z_3 = 0.6 \) and satisfy the condition (3.17). Using Procedure 3.2 we obtain the following.

Step 1. By (3.2) \(D = [0] \) since the transfer function (3.21) is strictly proper.

Step 2. Using (3.19) we obtain

\[
c_i = \frac{n(z_i)}{(z_i - z_1)(z_i - z_2)} = \frac{4(0.4)^2 - 3.9(0.4) + 0.94}{(-0.1)(-0.2)} = 1
\]

(3.22a)
\[c_2 = \frac{n(z_{ij})}{(z_{ij} - z_{ij})} = \frac{4(0.5)^2 - 3.9(0.5) + 0.94}{(0.1)(-0.1)} = 1 \] (3.22b)

\[c_3 = \frac{n(z_{ij})}{(z_{ij} - z_{ij})} = \frac{4(0.6)^2 - 3.9(0.6) + 0.94}{(0.1)(0.2)} = 2 \] (3.22c)

Step 3. The desired positive stable realization (3.18) of the transfer function (3.21) has the form

\[A = \text{blockdiag}[A_1, \ldots, A_m], \]
\[\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix}, \quad j = 1, \ldots, m; \]

\[A_j = \begin{bmatrix}
a_{j,0} & a_{j,1} & a_{j,2} & \cdots & a_{j,d_j-1}
\end{bmatrix}, \quad j = 1, \ldots, m; \]

\[B = \text{blockdiag}[b_1, \ldots, b_m], \quad b_j = \begin{bmatrix} 0 \\
0 \\
0 \\
1 \end{bmatrix}, \quad j = 1, \ldots, m; \]

\[C = \begin{bmatrix}
c_{i,j} & c_{i,j} & \cdots & c_{i,j}^{d_i+j-1} & c_{i,m} & \cdots & c_{i,m}^{d_i+j-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\end{bmatrix}, \quad j = 1, \ldots, m; \]

Note that the transfer function (3.21) does not satisfy the conditions of Theorem 3.1 and the desired realization can not be determined by the use of Procedure 3.1.

4. Problem solution for single-input single-output systems

Consider the proper transfer matrix of the form

\[T(z) = \begin{bmatrix}
T_{11}(z) & \ldots & T_{1m}(z) \\
\vdots & \ddots & \vdots \\
T_{m1}(z) & \ldots & T_{mm}(z)
\end{bmatrix} \in \mathbb{R}^{m \times n}(z), \]

\[T_{ij}(z) = \frac{n_{ij}(z)}{d_{ij}(z)}, \quad i = 1, \ldots, p; \quad j = 1, \ldots, m \] (4.1)

where \(\mathbb{R}^{m \times n}(z) \) is the set of proper rational real matrices. The matrix \(D \) of desired positive stable realization can be found by the use of the formula

\[D = \lim_{z \to \infty} T(z) \] (4.2)

The strictly proper transfer matrix

\[T_p(z) = T(z) - D \]

can be written in the form

\[T_p(z) = \begin{bmatrix}
N_{11}(z) & \ldots & N_{1m}(z) \\
\vdots & \ddots & \vdots \\
N_{m1}(z) & \ldots & N_{mm}(z)
\end{bmatrix} = N(z)D^{-1}(z) \] (4.3a)

where

\[N(z) = \begin{bmatrix}
N_{11}(z) & \ldots & N_{1m}(z) \\
\vdots & \ddots & \vdots \\
N_{m1}(z) & \ldots & N_{mm}(z)
\end{bmatrix} \in \mathbb{R}^{m \times m}(z), \]

\[D(z) = \text{diag}[d_{1}(z) \ldots d_{m}(z)] \in \mathbb{R}^{m \times m}(z), \]

\[N_{ij}(s) = c_{ij}^{d_i+j-1}s^{-d_i+j-1} + \cdots + c_{ij}^{d_i}z^{d_i+j-1} + \cdots + c_{ij}^{d_i+j-1}z^{d_i+j-1}, \quad i = 1, \ldots, p; \quad j = 1, \ldots, m \] (4.3c)

\[d_{ij}(z) = z^{d_i+j-1} - a_{j,0}z^{d_i+j-1} - \cdots - a_{j,d_j-1}z^{d_i+j-1}, \quad j = 1, \ldots, m \] (4.3d)

Theorem 4.1. There exists a positive stable realization of the form

of the transfer matrix (4.1) if the following conditions are satisfied

1) \(a_{j,0} \geq 0 \) for \(j = 1, \ldots, m; \quad k = 0, 1, \ldots, d_j - 1 \) (4.5a)
2) \(c_{ij}^{d_i+j-1} \geq 0 \) for \(i = 1, \ldots, p; \quad j = 1, \ldots, m; \quad k = 0, 1, \ldots, d_j - 1 \) (4.5b)
3) \(a_{j,0} + a_{j,1} + \cdots + a_{j,d_j-1} < 1 \) for \(j = 1, \ldots, m \) (4.5c)
4) \(\lim T(z) = T(\infty) \in \mathbb{R}^{m \times m}. \) (4.5d)

Proof. If the conditions (4.5a), (4.5b) and (4.5d) are met then from (4.4) we have

\[A \in \mathbb{R}^{m \times n}, \quad B \in \mathbb{R}^{n}, \quad C \in \mathbb{R}^{m} \quad \text{and} \quad D \in \mathbb{R}^{m \times n}. \]

By Theorem 2.2 the matrix \(A_j, j = 1, \ldots, m \) is asymptotically stable if the condition (4.5c) is satisfied and this implies the asymptotic stability of the matrix (4.4a). From (4.3d) and (4.3c) we have

\[d_{ij}(z) = z^{d_i+j-1} - [a_{j,0} \ldots a_{j,d_j-1}]z_j, \quad j = 1, \ldots, m \] (4.6)

and

\[N_{ij}(z) = \begin{bmatrix}
0 & c_{ij}^{d_i} & \cdots & c_{ij}^{d_i+j-1}z_j \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix} \]

where \(z_j = 1 \ldots z^{d_i+j-1} \), \(j = 1, \ldots, m \). (4.7)

Knowing \(d_{ij}(z) \) and using (4.6) we may find the matrix \(A_j, j = 1, \ldots, m \) and the matrix (4.4a). Using (4.7) we may find the matrix \(C \) since

\[N(z) = CZ \] (4.8)

where \(Z = \text{blockdiag}[Z_1, Z_2, \ldots, Z_m] \).

We shall show that the matrices (4.4a), (4.4b) and (4.4c) are the realization of the strictly proper transfer matrix (4.3a). It is easy to verify that

\[b_jd_j(z) = [I_j - A_j]Z_j, \quad j = 1, \ldots, m \]

and

\[BD(z) = [I_j - A_j]Z \] (4.9)

where

\[D(z) = \text{diag}[z^{d_1}, \ldots, z^{d_m}] - A_m Z \]

and

\[A_m = \text{diag}[a_{j,0}, \ldots, a_{j,m}], \quad a_{j} = [a_{j,0} \ldots a_{j,d_j-1}], \quad j = 1, \ldots, m. \] (4.10)

Premultiplying (4.9) by \(C[I_j - A_j]^{-1} \) and postmultiplying by \(D^{-1}(z) \) and using (4.8) we obtain

\[C[I_j - A_j]^{-1}B = CZD^{-1}(z) = N(z)D^{-1}(z) = T_p(z) \]

This completes the proof.
If the conditions of Theorem 4.1 are satisfied then the positive stable realization of the transfer matrix (4.1) can be found by the use of the following procedure.

Procedure 4.1.

Step 1. Using (4.2) we find the matrix (4.2).

Step 2. Find the common denominators $d_j(z)$, $j = 1, \ldots, m$ and write the strictly proper transfer matrix in the form (4.3a).

Step 3. Using (4.6) find the matrices A_0, \ldots, A_n and the matrix (4.4a).

Step 4. Using (4.7) or (4.8) find the matrix C.

Example 4.1. Find a positive stable realization of the transfer matrix

$$T(z) = \begin{bmatrix} z^3 + 0.8z + 0.2 & 2z^2 + 0.4z + 0.2 \\ z^2 - 0.2z - 0.1 & z^2 - 0.3z - 0.2 \\ 2z + 0.2 & z^2 + 0.7z + 0.4 \\ z^2 - 0.2z - 0.1 & z^2 - 0.3z - 0.2 \end{bmatrix}.$$ \hspace{1cm} (4.11)

The proper transfer matrix (4.11) satisfies the conditions of **Theorem 4.1.** Using Procedure 4.1 we obtain the following.

Step 1. Applying (4.2) to (4.11) we obtain

$$D = \lim_{z \to \infty} T(z) = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}.$$ \hspace{1cm} (4.12)

Step 2. The strictly proper transfer matrix has the form

$$T_p(s) = T(s) - D = \begin{bmatrix} z + 0.3 & z + 0.6 \\ z^2 - 0.2z - 0.1 & z^2 - 0.3z - 0.2 \\ 2z + 0.2 & z^2 + 0.6 \\ z^2 - 0.2z - 0.1 & z^2 - 0.3z - 0.2 \end{bmatrix} = N(z)D^{-1}(z).$$ \hspace{1cm} (4.13a)

where

$$N(z) = \begin{bmatrix} z + 0.3 & z + 0.6 \\ 2z + 0.2 & z + 0.6 \end{bmatrix}, \quad D(z) = \begin{bmatrix} z^2 - 0.2z - 0.1 & 0 \\ 0 & z^2 - 0.3z - 0.2 \end{bmatrix}.$$ \hspace{1cm} (3.13b)

Step 3. Using (4.4a), (4.6) and (4.13b) we obtain

$$A_n = \begin{bmatrix} 0 & 1 \\ 0.1 & 0.2 \end{bmatrix}, \quad A_{n-1} = \begin{bmatrix} 0 & 1 \\ 0.1 & 0.2 \end{bmatrix},$$

$$A_i = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad A_{i-1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$ \hspace{1cm} (4.14)

Step 4. Using (4.8) and (4.13b) we obtain

$$N(z) = \begin{bmatrix} z + 0.3 & z + 0.6 \\ 2z + 0.2 & z + 0.6 \end{bmatrix} = \begin{bmatrix} 0.3 & 0.6 \\ 0.2 & 0.6 \end{bmatrix} = CZ$$

and

$$C = \begin{bmatrix} 0.3 & 1 & 0.6 & 1 \\ 0.2 & 0.6 & 1 \end{bmatrix}.$$ \hspace{1cm} (4.15)

The matrix B defined by (4.4b) has the form

$$B = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}.$$ \hspace{1cm} (4.16)

The desired positive stable realization of the transfer matrix (4.11) is given by (4.14), (4.16), (4.15) and (4.12).

Remark 4.1. The presented method can be considered as an extension of the Method 1 to positive stable multi-input multi-output discrete-time linear systems. Using the idea of Gilbert method [5, 16] it is also possible to extend the Method 2 to multi-input multi-output positive stable discrete-time linear systems.

5. Problem solution for single-input single-output systems

Sufficient conditions for the existence of positive stable realizations of discrete-time linear systems have been established. Two different methods for determination of the positive stable realizations for given proper transfer functions have been proposed. The proposed procedures for determination of the positive realizations have been demonstrated on numerical examples. An open problem is formulation of necessary and sufficient conditions for existence of positive stable realizations of the linear systems. An open problem is an extension of the proposed method for positive fractional linear systems [15].

Acknowledgments

This work was supported by National Centre of Science in Poland under work no. NN514 689 40.

References

Wyznaczanie dodatnich stabilnych realizacji dla dyskretnych układów linearnych

Streszczenie: Podane zostaną warunki wystarczające istnienia stabilnej realizacji dodatniej dla danej właściwej macierzy transmitancji operatorowych. Przedstawione zostaną dwie metody wyznaczania stabilnej realizacji dodatniej dla zadanej macierzy transmitancji operatorowych. Efektywność proponowanych metod zilustrowana zostanie przykładami numerycznymi.

Słowa kluczowe: wyznaczanie, realizacja dodatnia, stabilna, układy dyskretny

prof. dr. hab. inż. Tadeusz Kaczorek

Born 27.04.1932 in Poland, received the MSc., PhD and DSc degrees from Electrical Engineering of Warsaw University of Technology in 1956, 1962 and 1964, respectively. In the period 1968-69 he was the dean of Electrical Engineering Faculty and in the period 1970-73 he was the prorector (deputy to rector) of Warsaw University of Technology. Since 1971 he has been professor and since 1974 full professor at Warsaw University of Technology. In 1988 he was elected a corresponding member and in 1996 full member of Polish Academy of Sciences. In the period 1988-1991 he was the director of the Research Centre of Polish Academy of Sciences in Rome. In June 1999 he was elected the full member of the Academy of Engineering in Poland. In May 2004 he was elected the honorary member of the Hungarian Academy of Sciences. He was awarded by the University of Zielona Gora (2002) by the title doctor honoris causa, the Technical University of Lublin (2004), the Technical University of Szczecin (2004), Warsaw University of Technology (2004), Bialystok University of Technology (2008), Lodz University of Technology (2009), Opole University of Technology (2009) and Poznan University of Technology (2011).

His research interests cover the theory of systems and the automatic control systems theory, specially, singular multidimensional systems, positive multidimensional systems and singular positive 1D and 2D systems. He has initiated the research in the field of singular 2D, positive 2D linear systems and positive fractional 1D and 2D systems. He has published 24 books (7 in English) and over 950 scientific papers.

He supervised 69 Ph.D. theses. More than 20 of this PhD students became professors in USA, UK and Japan. He is editor-in-chief of Bulletin of the Polish Academy of Sciences, Techn. Sciences and editorial member of about ten international journals.

e-mail: kaczorek@isep.pw.edu.pl