Monitoring of raw materials resources from end-of life vehicles

Jerzy Osiński, Przemysław Rumianek, Piotr Żach

Institute of Machine Design Fundamentals, Warsaw University of Technology

Abstract: In this paper work discussed the evaluation of the composition of the waste in terms of their use as an energy source, the results of sampling fraction of light coming from the shredder of ZŁOMPOL in Tarczyn. It was found that waste from end of life vehicles can be a significant source of energy. In particular fractions containing polymer materials with a high energy value. The problem is the significant level of pollution – waste will contain, among other heavy metal.

Keywords: recycling, waste, monitoring, energy, end-of life vehicles

1. Introduction

Waste qualifies as source of energy for both heating and in the power industry. This applies to both municipal waste, biomass, industrial and special waste. Usefulness of waste to energy used depends on the type, homogeneity and thermal properties. The thermal treatment of waste management and reduction of post-consumer materials from: household, industrial, municipal from end-of life vehicles, but also a threat because of the complexity and the large heterogeneity of waste (in the case of incorrect preparation and plant protection) resulting from the introduction into the atmosphere large quantities of gas, often toxic, dangerous to humans and the environment.

The main aspect of the design of cogeneration and decentralized energy production system is the creation of instruments to generate and control the monotonously of waste stream, as well as analyzing and correcting assumptions methods that guarantee the stability of the system.

The aim of this study was to develop guidelines for the design of power plant fuel processing raw materials in vehicle disassembly stations, poviat/communal center fuel processing of raw materials, other processing plants of waste from end-of life vehicles. For the purpose of this work was to demonstrate the environmental consulting the actual available, possible to obtain energy potential from end-of life vehicles.

2. Raw materials analysis of light fraction

The study involved a sample of the light fraction received from fraying at ZŁOMPOL in Tarczyn. Analysis was performed of: weight, quantitative, chemical and spectroscopic composition obtained structures.

Spectral analysis was performed, which was to determine the the light fraction pollution from fraying. The study contains the following matching spectral lines in left and right-handed polarization on the following frequencies: 1562÷1810 MHz sample prepared from the waste light fraction. Figure 1 shows the percentage of the disclosed and identified materials related to the mass of the sample. Figure 2 shows the quantitative contribution of each structure in the sample.

The most commonly used IR technique is IR absorption spectroscopy, used to receive the rotational and vibrational spectra. Infrared radiation (IR) spectroscopy allows for the analysis of both the structure of the molecules and their interactions with the environment [1].

The electromagnetic radiation from the IR range has a frequency close to the natural frequency of the particles. Passing through the sample of tested substance, radiation is selectively absorbed by increasing the amplitude of vibration in the molecules (or crystals) of the substance. In the analysis of these bands for polyatomic systems use the concept of normal vibration, treating each band as a result of the excitation of one or more normal vibrations. Depends on the symmetry of the molecule that normal vibrations are reflected in the absorption spectrum in the infrared range. Infrared absorption accompanied by changes in vibrational energy of molecules. Because energy is quantized, the radiation is absorbed only by certain specific energies characteristic vibrations of functional performing groups. The condition of the radiation absorption (or the possibility of vibration excitation radiation) is the dipole moment of the molecule variability during the vibrations. The IR spectrum is dominated by the absorption bands associated with the fundamental vibration tones molecules. It is possible to register above-tones and combinatorial and differential tones (simultaneous move in two or more oscillators), but they are much weaker.

In modern cameras used a faster method based on a sample X-ray beam of radiation from the test range IR (continuous spectrum). After passing the beam through the sample of is brought to its interference with the beam from the same source, but has not passed through the sample of and the spectrum is interpolated using the Fourier transform of the spectrum recorded interference pattern [2].
Z obtained from ZLOMPOL - light fraction of the material taken three equal, which one of the samples weight. Preliminary evaluation allowed us to determine the color: dark brown, hue: russet, pH: 5.43 acid, fragrance: intense fragrance oil, water content of 3.3 %, the volume light fraction 1 kg as shown in table 1:

Tab. 1. Characteristics of the light fraction sample

<table>
<thead>
<tr>
<th>A [mm]</th>
<th>B [mm]</th>
<th>H [mm]</th>
<th>volume [mm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>64</td>
<td>640 000</td>
</tr>
<tr>
<td>40</td>
<td>30</td>
<td>21</td>
<td>25 200</td>
</tr>
</tbody>
</table>

Fig. 1. Percentage structural composition of light fraction after shredding

Rys. 1. Procentowy skład strukturalny frakcji lekkiej po strzępieniu

Fig. 2. Quantitative composition of the light fraction after shredding

Rys. 2. Ilościowy skład frakcji lekkiej po strzępieniu

The material studied derivatives were found: alkylene glycol ethers, polypropylene glycols, polycyclic aromatic hydrocarbons, and including benzopyrene, calcium, magnesium, calcium sulfonate, phosphorothioate, dithiophosphates zinc phenolates sulphurised, heavy metals such as: lead, zinc, copper, nickel, cadmium, chromium, manganese, lacquer, resins, pyrene, mercaptans, paraffin. The heavy metal content in the 1 kg reliable sample of the light fraction was estimated at 20 mg÷420 mg.

Based on the composition of analyzes showed that reported pollution comes from oxidized residues, used brake fluids and lubricants in particular oil worked: gear, lubricants, residual gasoline, diesel fuel.

Research work done has shown a wide variety of composition of light fraction. Important for the further use is that pollution, petroleum derivatives, esters and alcohols, as well as high mechanical degradation (as a result of processing) also structural (which is a consequence of the simultaneous action of various corrosive chemicals and UV radiation).

Plastics are the materials with which we are increasingly dealing with. For example, it should be mentioned that, in the past decade, global production of plastics has increased by 62 %, while steel production decreased by 21 %. Post-consumer waste management (regardless of type) is becoming more of a problem.

Recovery of raw materials or energy inherent in the used products, it is still a marginal phenomenon – especially in our country. Landfills the municipal landfills are filled with waste materials, but also in a vast number of polymeric materials [3].

In order to utilize waste plastics technology can be used for energy recovery incineration, pyrolysis – reconstruction of the raw chemical, or mechanical recycling consists in re-processing waste plastics using the usual methods. Taking into account the specific nature of macromolecular compounds, the resulting implications for performance and durability of plastics in operating conditions, as well as the necessary guarantees and methods of modifying polymer waste can allow better use of their material value.

Polymer fractions were analyzed using a spectral analyzer IR – the percentage of possible characteristics of the polymeric material to obtain light fraction of the process shown in fig. 3.
The polymers have a high heating value greater than carbon and fuel oils. They are the most energy-dense materials. It was found that waste from end-of-life vehicles can be a significant source of energy, in particular fractions containing polymeric materials with a high energy value. The problem is the significant level of pollution – waste will contain, among other heavy metals.

3. Conclusion

It was found that waste from end-of-life vehicles can be a significant source of energy, in particular fractions containing polymeric materials with a high energy value. The problem is the significant level of pollution – waste will contain, among other heavy metals.

Bibliography

Monitorowanie zasobów energetycznych z pojazdów wycofanych z eksploatacji

Streszczenie: W pracy omówiono ocenę składu odpadów pod kątem możliwości ich wykorzystania jako źródła energii, przed-

![Image](image_url)
stawiono wyniki badań próbek frakcji lekkiej pochodzącej z strzępiarki firmy ZŁOMPOL w Tarczynie. Stwierdzono, że odpady pochodzące z pojazdów wycofanych z eksploatacji mogą być znaczącym źródłem energii, w szczególności frakcje zawierające materiały polimerowe o dużej wartości energetycznej. Problemem jest znaczny poziom zanieczyszczenia – odpady te zawierają między innymi metale ciężkie.

Słowa kluczowe: recykling, odpady, monitoring, energia, pojazdy wycofane z eksploatacji

Przemysław Rumianek, MSc Eng

PhD student at the Faculty of Automotive and Construction Machinery at the Warsaw University of Technology – the Institute of Machine Design Fundamentals. His main interest are relating to the strength of materials and structural strength analysis using the Finite Elements Method. His special interest are relating of problems of recycling end-of-like vehicles.

e-mail: przemyslaw.rumianek@gmail.com

Piotr Żach, PhD Eng

Worker of the Institute of Machine Design Fundamentals at the Faculty of Automotive and Construction Machinery at the Warsaw University of Technology. His main interest are relating to recycling of end-of life vehicles, recycling of plastics and composites and structural strength analysis of constructions made from plastics and composites.

e-mail: pzach@simr.pw.edu.pl

Prof. Jerzy Osiński, PhD Eng, DSc

Jerzy Osiński, born in 1951 year, vice-director of The Institute of Machine Design Fundamentals Warsaw University of Technology (in years 1996–2012), actually Chief of Manufacturing Technologies Team. His main interest are relating to the strength of materials and structural strength analysis using the Finite Elements Method. His special interest are relating of problems of recycling end-of-like vehicles He is the supervisor of twenty doctorate dissertations.

e-mail: josinski@pbm.simr.pw.edu.pl