Positive continuous-discrete time linear systems with delays in state vector

eng Artykuł w języku Angielskim DOI:

wyślij Łukasz Sajewski Bialystok University of Technology, Faculty of Electrical Engineering

Pobierz Artykuł

Abstract

A new class of positive continuous-discrete time linear systems with delays in state vector is addressed. Three state space model of this class of linear systems are considered. Necessary and sufficient conditions for the positivity of continuous-discrete time systems with delays in state vector are established. The proper transfer matrix of this class of linear systems is given.

Keywords

positive continuous-discrete time systems

Dodatnie liniowe układy ciągło-dyskretne z opóźnieniem w wektorze stanu

Streszczenie

Zaprezentowana zostanie nowa klasa dodatnich układów ciągło-dyskretnych z opóźnieniem w wektorze stanu. Rozpatrzone zostaną trzy modele opisujące tę klasę układów w przestrzeni stanu. Podane zostaną warunki konieczne i wystarczające dodatniości liniowych układów ciągło-dyskretnych z opóźnieniem w wektorze stanu. Podana zostanie postać operatorowej macierzy transmitancji właściwych rozpatrywanej klasy układów.

Słowa kluczowe

dodatnie układy ciągło-dyskretne

Bibliografia

  1. Bistritz Y., “A stability test for continuous-discrete bivariate polynomials”, Proc. Int. Symp. on Circuits and Systems, vol. 3, 682-685 (2003). 
  2. Busłowicz M., “Improved stability and robust stability conditions for a general model of scalar continuous-discrete linear systems”, Measurement Automation and Monitoring, (submitted for publication). 
  3. Busłowicz M., “Stability and robust stability conditions for a general model of scalar continuous-discrete linear systems”, Measurement Automation and Monitoring, vol. 56, no. 2, 133-135 (2010). 
  4. Busłowicz M., “Robust stability of the new general 2D model of a class of continuous-discrete linear systems”, Bull. Pol. Acad. Sci. Techn. vol. 57, no. 4 (2010). 
  5. Dymkov M., I. Gaishun, E. Rogers, K. Gałkowski and D. H. Owens, “Control theory for a class of 2D continuous-discrete linear systems”, Int. J. Control 77 (9), 847-860 (2004). 
  6. Farina L. and Rinaldi S., Positive Linear Systems; Theory and Applications, J. Wiley, New York 2000. 
  7. Gałkowski K, Rogers E., Paszke W., Owens D. H., “Linear repetitive process control theory applied to a physical example”, Int. J. Appl. Math. Comput. Sci. 13 (1), 87-99 (2003). 
  8. Kaczorek T., “Reachability and Minimum energy control of positive 2D continuous-discrete systems”, Bull. Pol. Acad. Sci. Techn. vol. 46, no. 1, 85-93 (1998). 
  9. Kaczorek T., Positive 1D and 2D Systems, Springer-Verlag, London, 2002. 
  10. Kaczorek,T., “Positive 2D hybrid linear systems”, Bull. Pol. Acad. Sci. Tech. vol. 55, no. 4, 351-358 (2007). 
  11. Kaczorek T., “Positive fractional 2D hybrid linear systems”, Bull. Pol. Acad. Tech. vol. 56, no. 3, 273-277 (2008). 
  12. Kaczorek T., “Realization problem for positive 2D hybrid systems”, COMPEL vol. 27 no. 3, 613-623 (2008). 
  13. Kaczorek T., Marchenko V. and Sajewski Ł., “Solvability of 2D hybrid linear systems - comparison of the different methods”, Acta Mechanica et Automatica vol. 2, no. 2, 59-66 (2008). 
  14. Narendra K.S. and Shorten R., “Hurwitz stability of Metzler matrices”, IEEE Trans. Autom. Contr. vol. 55, no. 6, 1484-1487 (2010). 
  15. Sajewski Ł., “Solution of 2D singular hybrid linear systems”, Kybernetes vol. 38, no. 7/8, 1079-1092 (2009).