Positive minimal realizations of continuous-discrete linear systems with transfer function with separable denominator or numerator

eng Artykuł w języku Angielskim DOI:

wyślij Łukasz Sajewski Faculty of Electrical Engineering, Białystok University of Technology, Poland

Pobierz Artykuł

Abstract

The positive minimal realization problem for continuous-discrete linear single-input, single-output (SISO) systems is formulated. Two special case of the continuous-discrete systems are analyzed. Method based on the state variable diagram for nnding positive minimal realizations of given proper transfer functions is proposed. Sufficient conditions for the existence of positive minimal realizations of given proper transfer functions with separable numerator or transfer functions with separable denominator are established. Two procedures for computation of positive minimal realizations are proposed and illustrated by numerical examples.

Keywords

computation, continuous-discrete, existence, minimal, positive, realization

Wyznaczanie dodatnich realizacji minimalnych układów ciągło-dyskretnych o transmitancji z separowanym licznikiem lub mianownikiem

Streszczenie

Sformułowany został problem wyznaczania dodatniej realizacji minimalnej dla klasy liniowych układów ciągło-dyskretnych. Przeanalizowane zostały dwa przypadki szczególne układów ciągło-dyskretnych. Zaproponowana została metoda, bazująca na schemacie zmiennych stanu, wyznaczania dodatniej realizacji minimalnej na podstawie znanej transmitancji operatorowej układu. Określono warunki wystarczające istnienia dodatniej realizacji minimalnej dla transmitancji operatorowej z separowanym licznikiem lub mianownikiem. Podano dwie procedury wyznaczania dodatniej realizacji minimalnej, których efektywność zobrazowano przykładami numerycznymi.

Słowa kluczowe

dodatni, minimalna, realizacja, układ ciągło-dyskretny, wyznaczanie

Bibliografia

  1. Farina L., Rinaldi S., Positive Linear Systems, [in:] Theory and Applications, J. Wiley, New York 2000.
  2. Kaczorek T., Positive 1D and 2D Systems, Springer-Verlag, London 2002.
  3. Kaczorek T., Busłowicz M., Minimal realization problem for positive multivariable linear systems with delay, “Int. J. Appl. Math. Comput. Sci.”, Vol. 14, No. 2, 2004, 181-187.
  4. Kaczorek T., A realization problem for positive continuous-time linear systems with reduced numbers of delay, “Int. J. Appl. Math. Comp. Sci.”, Vol. 16, No. 3, 2006, 325-331.
  5. Kaczorek T., Positive minimal realizations for singular discrete-time systems with delays in state and delays in control, “Bull. Pol. Acad. Sci. Tech.”, Vol. 53, No. 3, 2005, 293-298.
  6. Kaczorek T., Realization problem for positive discretetime systems with delay, “System Science”, Vol. 30, No. 4, 2004, 117-130.
  7. Kaczorek T., Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs, “Int. J. Appl. Math. Comp. Sci.”, Vol. 16, No. 2, 2006, 101-106.
  8. Galkowski K., Wood J. (Eds), Multidimensional Signals, Circuits and Systems, Taylor and Francis, London 2001.
  9. Kaczorek T., Linear control systems, Vol. 1, Research Studies Press J. Wiley, New York 1992.
  10. Kaczorek T., Positive 2D hybrid linear systems, “Bull. Pol. Acad. Sci. Tech.”, Vol. 55, No. 4, 2007, 351-358.
  11. Kaczorek T., Positive fractional 2D hybrid linear systems, “Bull. Pol. Acad. Sci. Tech.”, Vol. 56, No. 3, 2008, 273-277.
  12. Kaczorek T., Marchenko V., Sajewski Ł., Solvability of 2D hybrid linear systems - comparison of the different methods, “Acta Mechanica et Automatica”, Vol. 2, No. 2, 2008, 59-66.
  13. Sajewski Ł., Positive minimal realization of continuousdiscrete linear systems with all-pole and all-zero transfer function, “Acta Mechanica et Automatica”, 2012 (in Press).
  14. Kaczorek T., Realization problem for positive 2D hybrid systems, “COMPEL”, Vol. 27, No. 3, 2008, 613-623.
  15. Sajewski Ł., Kaczorek T., Computation of positive realizations of MIMO hybrid linear systems in the form of second Fornasini-Marchesini model, “Archives of Control Sciences”, Vol. 20, No. 3, 2010, 253-271.
  16. Sajewski Ł., Kaczorek T., Computation of positive realizations of singular SISO hybrid linear systems, “JAMRIS”, Vol. 3, No. 4, 2009, 8-14.
  17. Antoniou G.E., Paraskevopoulos P.N., Varoufakis S.J., Minimal state space realization of factorable 2D transfer functions, “IEEE Trans. on Circ. and Sys.”, Vol. 35, No. 8, 1988, 1055-1058.
  18. Sun-Yuan Kung, Levy B.C., Morf M., Kailath T., New results in 2-D systems theory, Part II: 2-D state-space models-realization and the notions of controllability, observability and minimality, “Proc. of the IEEE”, Vol. 65, No. 6, 1977, 945-961.
  19. Sajewski Ł., Solution of 2D singular hybrid linear systems, “Kybernetes”, Vol. 38, No. 7/8, 2009, 1079-1092.
  20. Roesser R.B., A discrete state-space model for linear image processing, “IEEE Trans. on Autom. Contr.”, AC-20, 1975, 1-10.
  21. Kurek J., The general state-space model for a two-dimensional linear digital system, “IEEE Trans. on Austom. Contr.”, AC-30, 1985, 600-602.
  22. Benvenuti L., Farina L., A tutorial on the positive realization problem, “IEEE Trans. on Autom. Control”, Vol. 49, No. 5, 2004, 651-664.
  23. Dymkov M., Gaishun I., Rogers E., Gałkowski K., Owens D.H., Control theory for a class of 2D continuous-discrete linear systems, “Int. J. Control”, Vol. 77, No. 9, 2004, 847-860.
  24. Varoufakis S.J., Paraskevopoulos P.N., Antoniou G.E., On the minimal state-space realizations of all-pole and all-zero 2-D systems, “IEEE Trans. on Circ. and Sys.”, Vol. 34, No. 3, 1987, 289-292.