Przegląd robotów humanoidalnych

pol Artykuł w języku polskim DOI: 10.14313/PAR_218/33

Zdzisław Kowalczuk , wyślij Michał Czubenko Politechnika Gdańska, Wydział Elektroniki, Telekomunikacji i Informatyki, Katedra Systemów Decyzyjnych i Robotyki

Pobierz Artykuł


W artykule przedstawiono przegląd najpopularniejszych robotów humanoidalnych, wyróżniając ich ważniejsze cechy i porównując podstawowe charakterystyki, biorąc przy tym pod uwagę pożądane kognitywne aspekty rozwoju robotyki. Wśród osiągalnych cech rozmaitych rozwiązań aparatów humanoidalnych dostępnych na rynku – wyróżnia się głównie liczbę stopni swobody, rodzaj zastosowanego układu lokomocji oraz możliwości wyrażania mimiki twarzy, jak również ekspresji emocji.

Słowa kluczowe

cechy humanoidalne, robot

A review of humanoid robots


In this article we present the most popular humanoid robots, highlighting their important characteristics and comparing basic characteristics desirable taking into account the cognitive aspects of development of robotics. Among the achievable features of different solutions for humanoid systems available on the market – we distinguish mainly the degree of freedom, the kind of drive and the ability to express facial expressions, as well as the expression of emotions.


humanoid features, robots


  1. Breland S., McKinney D., Parry D., Peachey C., NRL Designs Robot for Shipboard Firefighting, Naval Research Laboratory, “SPECTRA”, 2012, 8–10.
  2. Boucenna S., Narzisi A., Tilmont E., Muratori F., Pioggia G., Cohen D., Chetouani M., Interactive Technologies for Autistic Children: A Review, “Cognitive Computation”, Vol. 6, 4/2014, 722–740.
  3. Shamsuddin S., Yussof H., Ismail L.I., Mohamed S., Hanapiah F.A., Zahari N.I., Initial Response in HRIa Case Study on Evaluation of Child with Autism Spectrum Disorders Interacting with a Humanoid Robot NAO, ”Procedia Engineering”, 41/2012, 1448–1455.
  4. Broadbent E., Stafford R., MacDonald B., Acceptance of Healthcare Robots for the Older Population: Review and Future Directions, ”International Journal of Social Robotics”, Vol. 1, 4/2009, 319–330, DOI: 10.1007/s12369-009-0030-6.
  5. Saunders R., Towards Autonomous Creative Systems: A Computational Approach, “Cognitive Computation” 3/2012, 216–225. DOI: 10.1007/s12559-012-9131-x.
  6. Magill K., Erden Y.J., Autonomy and Desire in Machines and Cognitive Agent Systems, “Cognitive Computation”, Vol. 4, 3/2012, 354–364, DOI: 10.1007/s12559-012-9140-9.
  7. Deutsch T., Muchitsch C., Zeilinger H., Bader M., Vincze M., Lang R., Cognitive decision unit applied to autonomous biped robot NAO, [in:] 9th IEEE International Conference on Industrial Informatics, IEEE, Caparica, Lisbon, July, 2011, 75–80, DOI: 10.1109/INDIN.2011.6034840.
  8. Czubenko M., Ordys A., Kowalczuk Z., Autonomous driver based on intelligent system of decision-making, “Cognitive Computation”, Vol. 7, 5/2015, 569-581 DOI: 10.1007/s12559-015-9320-5.
  9. Rodriguez Á.G.G., Rodriguez A.G., Mobile Robots, [in:] Rodriguez N.E.N. (ed.), Advanced Mechanics in Robotic Systems, 41–57, Springer, London 2011.
  10. Kaplan F., Who is afraid of the humanoid? Investigating cultural differences in the acceptance of robots, ”International Journal of Humanoid Robotics” 03/2004, 465–480, DOI: 10.1142/S0219843604000289.
  11. Waytz A., Heafner J., Epley N., The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle, ”Journal of Experimental Social Psychology” 52/2014, 113–117, DOI: 10.1016/j.jesp.2014.01.005.
  12. Kowalczuk Z., Czubenko M., xEmotion – obliczeniowy model emocji dedykowany dla inteligentnych systemów decyzyjnych, ”Pomiary Automatyka Robotyka” 17/2013, 60–65.
  13. Kowalczuk Z., Czubenko M., Intelligent Decision-Making System for Autonomous Robots, ”International Journal of Applied Mathematics and Computer Science” 4/2011, 621–635, DOI: 10.2478/v10006-011-0053-7.
  14. Kowalczuk Z., Czubenko M., Interpretation and modeling of an Emotions System for the Perspective Used in Scheduling Variable Control of Autonomous Agent Systems, “Frontiers in Robotics and AI – Computational Intelligence”, 2016, submitted for publication.
  15. Ishihara H., Asada M., Affetto: towards a design of robots who can physically interact with people, which biases the perception of affnity (beyond uncanny), [in:] International Conference on Robot and Automation Workshop on Art and Robotics: Freud’s Unheimlich and Uncanny Valley, 2013.
  16. Ishihara H., Yoshikawa Y., Asada M., Realistic child robot Affetto for understanding the caregiver-child attachment relationship that guides the child development, [in:] International Conference on Development and Learning, IEEE, August, 2011, 1–5.
  17. Daniel B., Korondi P., Thomessen T., New approach for industrial robot controller user interface, [in:] IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, IEEE, November, 2013, 7831–7836, DOI: 10.1109/IECON.2013.6700441.
  18. Breazeal C., Scassellati B., A context-dependent attention system for a social robot, [in:] International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 1999, 1146–1151.
  19. Breazeal C., Robot in Society: Friend or Appliance?, [in:] Agents99 workshop on emotion-based agent architectures, Seattle, WA, 1999, 18–26.
  20. Cakmak M., Thomaz A., Designing robot learners that ask good questions, [in:] 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Boston, MA, 2012, 17–24.
  21. Chao C., Lee J., Begum M., Thomaz A., Simon plays Simon says: The timing of turn-taking in an imitation game, [in:] RO-MAN, 2011 IEEE, 2011, 235–240.
  22. Chao C., Thomaz A., Timing in multimodal turn-taking interactions: Control and analysis using timed petri nets, ”Journal of Human-Robot Interaction”1/2012, 4–25.
  23. Yamazaki R., Nishio S., Ogawa K., Ishigur H., Teleoperated android as an embodied communication medium: A case study with demented elderlies in a care facility, [in:] IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, IEEE, September, 2012, 1066–1071, DOI: 10.1109/ROMAN.2012.6343890.
  24. Mara M., Appel M., Ogawa H., Lindinger C., Ogawa E., Ishiguro H., Ogawa K., Tell me your story, robot. Introducing an android as fiction character leads to higher perceived usefulness and adoption intention, [in:] 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), IEEE, 2013, 193–194.
  25. Ishi C.T., Liu C., Ishiguro H., Hagita N., Evaluation of formant-based lip motion generation in tele-operated humanoid robots, [in:] 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, October, 2012, 2377–2382, DOI: 10.1109/IROS.2012.6385795.
  26. Hu J., Edsinger A., Donaldson N., Solano M., Solochek A., Marchessault R., An advanced medical robotic system augmenting healthcare capabilities – robotic nursing assistant, [in:] 2011 IEEE International Conference on Robotics and Automation, IEEE, May, 2011, 6264–6269, DOI: 10.1109/ICRA.2011.5980213.
  27. Togami M., Amano A., Sumiyoshi T., Obuchi Y., DOA estimation method based on sparseness of speech sources for human symbiotic robots, [in:] Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, 3693–3696, DOI: 10.1109/ICASSP.2009.4960428.
  28. Sumiyoshi T., Togami M., Obuchi Y., ASR for Human-Symbiotic Robot EMIEW2 with Mechanical Noise and Floor-Level Noise Reduction, [in:] 12th Annual Conference of the International Speech Communication Association, Florence, Italy, 2011, 3141–3144.
  29. Hosoda Y., Egawa S., Tamamoto J., Yamamoto K., Nakamura R., Togami M., Basic Design of Human-Symbiotic Robot EMIEW, [in:] 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, October, 2006, 5079–5084, DOI: 10.1109/IROS.2006.282596.
  30. Kędzierski J., Kaczmarek P., Dziergwa M., Tchoń K., Design for a Robotic Companion, ”International Journal of Humanoid Robotics” 2/2015, 1550007−15500031, 10.1142/S0219843615500073.
  31. Kędzierski J., Muszyński R., Zoll C., Oleksy A., Frontkiewicz M., EMYS-Emotive Head of a Social Robot, ”International Journal of Social Robotics”, 2/2013, 237–249, DOI: 10.1007/s12369-013-0183-1.
  32. Agrawal T., Gopinath D., Localization using relative mapping technique for mobile soccer robots, [in:] International Conference on Communication and Signal Processing, IEEE, April, 2013, 265–269, DOI: 10.1109/iccsp.2013.6577056.
  33. Ge S.S., Social robotics: Integrating advances in engineering and computer science, [in:] Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Mae Fah Luang University, Chang Rai, Thailand, 2007.
  34. Schaub B., Asimo learns how to jaywalk, “New Scientist” 2590/2007, 24.
  35. Tajima R., Honda D., Suga K., Fast running experiments involving a humanoid robot, [in:] 2009 IEEE International Conference on Robotics and Automation, IEEE, May, 2009, 1571–1576, DOI: 10.1109/ROBOT.2009.5152404.
  36. Bogue R., Brain-computer interfaces: control by thought, ”Industrial Robot: An International Journal” 2/2010, 126–132, DOI: 10.1108/01439911011018894.
  37. Lahr D., Hong D., The Development of CHARLI: A Linear Actuated Powered Full Size Humanoid Robot, [in:] International Conference on Ubiquitous Robots and Ambient Intelligence, Seul, 2008.
  38. Lahr D., Hong D., A Biomimetic Parallelly Actuated Humanoid Robot Design, [in:] UKC, Raleigh, NC, 2009.
  39. Kaneko K., Kanehiro F., Morisawa M., Akachi K., Miyamori G., Hayashi A., Kanehira N., Humanoid robot HRP-4 - Humanoid robotics platform with lightweight and slim body, [in:] 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, September, 2011, 4400–4407, DOI: 10.1109/IROS.2011.6094465. 
  40. Kaneko K., Kanehiro F., Morisawa M., Miura K., Nakaoka S., Kajita S., Cybernetic human HRP-4C, [in:] 2009 9th IEEE-RAS International Conference on Humanoid Robots, IEEE, December, 2009, 7–14, DOI: 10.1007/978-3-642-19457-3_18.
  41. Endo N., Takanishi A., Development of Whole-Body Emotional Expression Humanoid Robot for ADLAssistive RT Services, ”Journal of Robotics and Mechatronics” 6/2011, 969–977.
  42. Zecca M., Macrì G., Mizoguchi Y., Monaco V., Endo N., Itoh K., Dario P., Takanishi A. (2010): Evaluation of the KOBIAN and HABIAN Emotion Expression Humanoid Robots with European Elderly People, [in:] Parenti Castelli V., Schiehlen W. (eds.), ROMANSY 18 Robot Design, Dynamics and Control, CISM International Centre for Mechanical Sciences, Vol. 524, 449–456, Springer Vienna, Vienna, DOI: 10.1007/978-3-7091-0277-0_53.
  43. Trovato G., Zecca M., Sessa S., Jamone L., Ham J., Hashimoto K., Takanishi A., Towards culture-specific robot customisation: A study on greeting interaction with Egyptians, [in:] 2013 IEEE RO-MAN, IEEE, August, 2013, 447–452, DOI: 10.1109/ROMAN.2013.6628520.
  44. Kowalczuk Z., Merta T., Stereo image visualization for VISROBOT system, [in:] 18th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, 2013, 794–799, DOI: 10.1109/MMAR.2013.6670014.
  45. Kowalczuk Z., Reaktywny system oddziaływania ze środowiskiem opartym na inteligentnym systemie decyzyjnym, [in:] Krawczyk H. (ed.), KASKBOOK: Inteligentne Przestrzenie Usług Informacyjnych, 2009, 35–46, WETI PG, Gdańsk-Bytów.
  46. Nelson G., Saunders A., Neville N., Swilling B., Bondaryk J., Billings D., Lee C., Playter R., Raibert M., PEtMAN: A Humanoid Robot for Testing Chemical Protective Clothing, ”Journal of the Robotics Society of Japan” 4/2012, 372–377, DOI: 10.7210/jrsj.30.372.
  47. Ni L.G., Kari D.P., Muganza A., Dushime B., Zebaze A.N., Wireless integration of tactile sensing on the hand of a humanoid robot NAO, [in:] The 21st IEEE International Symposium on Robot and Human Interactive Communication, IEEE, September, 2012, 982–988, DOI: 10.1109/ROMAN.2012.6343877.
  48. Nanty A., Gelin R., Fuzzy Controlled PAD Emotional State of a NAO Robot, [in:] 2013 Conference on Technologies and Applications of Artificial Intelligence, IEEE, December, 2013, 90–96, DOI: 10.1109/TAAI.2013.30.
  49. Kulk J., Welsh J.S., Evaluation of walk optimisation techniques for the NAO robot, [in:] 2011 11th IEEERAS International Conference on Humanoid Robots, IEEE, Bled, October, 2011, 306–311, DOI: 10.1109/Humanoids.2011.6100827.
  50. Gouaillier D., Collette C., Kilner C., Omni-directional closed-loop walk for NAO, [in:] International Conference on Humanoid Robots, 2010, 448–454, DOI: 10.1109/ICHR.2010.5686291.