Wielokrotny filtr cząsteczkowy w estymacji stanu systemów dynamicznych

pol Artykuł w języku polskim DOI: 10.14313/PAR_231/11

wyślij Jacek Michalski*, Piotr Kozierski** * Politechnika Poznańska, Wydział Elektryczny, Instytut Automatyki, Robotyki i Inżynierii Informatycznej, Zakład Automatyki i Robotyki ** Politechnika Poznańska, Wydział Informatyki, Instytut Automatyki i Robotyki, Zakład Układów Elektronicznych i Przetwarzania Sygnałów

Pobierz Artykuł

Streszczenie

W artykule poruszono problem estymacji stanu systemów dynamicznych oraz zaproponowano nową metodę jego rozwiązania – wielokrotny filtr cząsteczkowy. Jest to odmiana filtru cząsteczkowego pozwalająca na zrównoleglenie jego pracy przez podział na niezależne filtry tak, by umożliwić implementację algorytmu, także na urządzeniach o niedużej mocy obliczeniowej. Algorytm został zaimplementowany dla obiektu jedno- oraz wielowymiarowego, a jakość estymacji porównano dla różnej liczby cząsteczek. Do oceny działania algorytmu wykorzystano wskaźnik jakości aRMSE. Na podstawie badań stwierdzono, iż zrównoleglenie pracy filtru cząsteczkowego może poprawić działanie algorytmu.

Słowa kluczowe

algorytm Bootstrap, estymacja stanu, filtr Bayesa, filtr cząsteczkowy, systemy dynamiczne, wielokrotny filtr cząsteczkowy

MultiPDF Particle Filter for State Estimation of Dynamical Systems

Abstract

In this paper the problem of state estimation of dynamical systems has been discussed and the new solution, named MultiPDF Particle Filter has been proposed. It is a modification of Particle Filter that allows to parallelize its work by dividing into independent filters in a way to enable the implementation of the algorithm also on devices with low computing power. The algorithm has been implemented for a one- and multi-dimensional object, and the quality of the estimation has been compared for a different number of particles. The quality index aRMSE has been used to evaluate the algorithm’s performance. Based on the simulation results it was found that the work parallelization of a Particle Filter can improve estimation quality of the algorithm.

Keywords

Bayesian Filter, Bootstrap Filter, dynamical systems, MultiPDF Particle Filter, particle filter, state estimation

Bibliografia

  1. Hajiyev C., Soken H.E., Robust adaptive Kalman filter for estimation of UAV dynamics in the presence of sensor/actuator faults, “Aerospace Science and Technology”, Vol. 28, No. 1, 2013, 376–383, DOI: 10.1016/j.ast.2012.12.003.
  2. Marantos P., Koveos Y., Kyriakopoulos K.J., UAV State Estimation using Adaptive Complementary Filters, “IEEE Transactions on Control Systems Technology”, Vol. 24, No. 4, 2016, 1214–1226, DOI: 10.1109/TCST.2015.2480012.
  3. Chang C., Ansari R., Khokhar A., Multiple object tracking with kernel particle filter, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2005, Vol. 1, 566–573, DOI: 10.1109/CVPR.2005.243.
  4. Korres G.N., A Distributed Multiarea State Estimation, “IEEE Transactions on Power Systems”, Vol. 26, No. 1, 2011, 73–84, DOI: 10.1109/TPWRS.2010.2047030.
  5. Gordon N.J., Salmond D.J., Smith A.F.M., Novel Approach to Nonlinear/non-Gaussian Bayesian State Estimation,  “IEE Proceedings F – Radar and Signal Processing”, Vol. 140, No. 2, 1993, 107–113. DOI: 10.1049/ip-f-2.1993.0015.
  6. Kalman R.E., A New Approach to Linear Filtering and Prediction Problems, “Journal of Basic Engineering”, Vol. 82, No. 35, 1960, 35–45. DOI: 10.1155/1.3662552.
  7. Michalski J., Kozierski P., Ziętkiewicz J., Porównanie metod estymacji stanu systemów dynamicznych, „Pomiary Automatyka Robotyka”, Vol. 21, Nr 4, 2017, 41–47, DOI: 10.14313/PAR_226/41.
  8. Yin S., Zhu X., Intelligent particle filter and its application to fault detection of nonlinear system, “IEEE Transactions on Industrial Electronics”, Vol. 62, No. 6, 2015, 3852–3861, DOI: 10.1109/TIE.2015.2399396.
  9. Liang-Qun L., Hong-Bing J., Jun-Hu L., The iterated extended Kalman particle filter, [in:] IEEE International Symposium on Communications and Information Technology, ISCIT 2005, Vol. 2, 1213–1216, DOI: 10.1109/ISCIT.2005.1567087.
  10. Yadaiah N., Sowmoya G., Neural Network Based State Estimation of Dynamical Systems, [in:] International Joint Conference on Neural Networks, IJCNN’06, 1042–1049, DOI: 10.1109/IJCNN.2006.246803.
  11. Miranda V., Pereira J., Saraiva J.T., Load allocation in DMS with a fuzzy state estimator, “IEEE Transactions on Power Systems”, Vol. 15, No. 2, 2000, 529–534, DOI: 10.1109/59.867136.
  12. Straka O., Simandl M., Particle Filter with Adaptive Sample Size, “Kybernetika”, Vol. 47, No. 3, 2011, 385–400.
  13. Michalski J., Kozierski P., Ziętkiewicz J., Comparison of auxiliary and Likelihood Particle Filters for state estimation of dynamical systems, “Przegląd Elektrotechniczny”, Vol. 94, 2018, 86–90, DOI: 10.15199/48.2018.12.19.
  14. Arulampalam S., Maskell S., Gordon N., Clapp T., A Tutorial on Particle Filters for On-line Nonlinear/Non-Gaussian Bayesian Tracking, “IEEE Transactions on Signal Processing”, Vol. 50, No. 2, 2002, 174–188, DOI: 10.1109/78.978374.
  15. Michalski J., Kozierski P., Ziętkiewicz J., Comparison of Particle Filter and Extended Kalman Particle Filter, “Studia z Automatyki i Informatyki”, Vol. 42, 2017, 43–51.
  16. Michalski J., Kozierski P., Ziętkiewicz J., Giernacki W., Likelihood Particle Filter and Its Proposed Modifications, “Studia z Automatyki i Informatyki”, Vol. 43, 2018, 81–93.
  17. Kozierski P., Lis M., Ziętkiewicz J., Resampling in Particle Filtering – Comparison, “Studia z Automatyki i Informatyki”, Vol. 38, 2013, 35–64.
  18. Kitagawa G., Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models, “Journal of Computational and Graphical Statistics”, Vol. 5, No. 1, 1996, 1–25, DOI: 10.2307/1390750.
  19. Florek A., Mazurkiewicz P., Sygnały i systemy dynamiczne, Wyd. 2, Poznań 2015, ISBN: 978-83-7775360-6.