The Use of IR Soldering Stations in the Process of Disassembling in BGA Packaging

eng Artykuł w języku angielskim DOI: 10.14313/PAR_236/59

wyślij Piotr Witkowski Politechnika Opolska, Wydział Elektrotechniki, Automatyki i Informatyki

Pobierz Artykuł


This article presents the definition of a soldering profile and its division into individual phases. For the purpose of this article, an experiment was performed in which the influence of various factors such as – BGA package size, PCB size, the type of solder – on the temperature profile of a soldering process was investigated. The article is an overview and can serve as a guidebook for people who use soldering stations in their daily work to disassemble systems in BGA packages, or who plan to use such machines in their research


circuit disassembly, FCBGA, IR soldering station, printed circuit board, reflow soldering

Zastosowanie stacji lutowniczych IR w procesie demontażu układów w obudowach BGA


W artykule przedstawiono definicję profilu lutowniczego oraz jego podział na poszczególne fazy. Na potrzeby artykułu przeprowadzono eksperyment, w którym zbadano wpływ różnych czynników na proces demontażu/montażu, takich jak: wielkość układu BGA, wielkość płytki drukowanej, rodzaj spoiwa, dobrany profil temperaturowy. Artykuł ma charakter poglądowy i może służyć jako przewodnik dla osób, które w codziennej pracy wykorzystują stacje lutownicze do demontażu układów w obudowach BGA lub planują wykorzystanie takich maszyn w swoich badaniach.

Słowa kluczowe

demontaż układów, FCBGA, grzałka na podczerwień, płyta drukowana, stacja lutownicza


  1. Anicai L., Petica A., Costovici S., Moise C., Brincoveanu O., Visan T., Electrodeposition of Sn–In Alloys Involving Deep Eutectic Solvents, “Coatings”, 2019, DOI: 10.3390/coatings9120800.
  2. Yang W., Du Z., Yu S., Li Y., Feng J., Wei X., Li Q., Zhan Y., The Effect of Rare Earths Additions on the Microstructure and the Corrosion Behavior of Sn-0.7Cu-0.075Al Solder Alloy, “Materials”, 2019, DOI: 10.3390/ma12223731.
  3. Koncz-Horváth D., Gergely G., Gácsi Z., Whisker-Like Formations in Sn-3.0Ag-Pb Alloys, Archives of Metallurgy and Materials, Vol. 62, No. 2B, 2017, 1027–1031, DOI: 10.1515/amm-2017-0147.
  4. Ren G., Collins M.N., Improved Reliability and Mechanical Performance of Ag Microalloyed Sn58Bi Solder Alloys, “Metals”, 2019, DOI: 10.3390/met9040462.
  5. Sidhu R.S., Aspandiar R., Vandervoort S., Amir D., Murtagian G., Impact of processing conditions and solder materials on surface mount assembly defects. “JOM”, 63, 2011, 47–51, DOI: 10.1007/s11837-011-0174-3.
  6. Wang K., Wang F., Huang Y., Qi K., Comprehensive Properties of a Novel Quaternary Sn-Bi-Sb-Ag Solder: Wettability, Interfacial Structure and Mechanical Properties, “Metals”, 2019, DOI: 10.3390/met9070791.
  7. Kobayashi T., Shohji I., Evaluation of Microstructures and Mechanical Properties of Sn-10Sb-Ni Lead-Free Solder Alloys with Small Amount of Ni Using Miniature Size Specimens, “Metals”, 2019, DOI: 10.3390/met9121348.
  8. Atieh A.M., Abedalaziz T.J., AlHazaa A., Weser M., Al-Kouz W.G., Sari M.S., Alhoweml I., Soldering of Passive Components Using Sn Nanoparticle Reinforced Solder Paste: Influence on Microstructure and Joint Strength, “Nanomaterials”, 2019, DOI: 10.3390/nano9101478.
  9. Huang Y.E., Hagen D., Dody G., Burnette T., Effect of solder reflow temperature profile on plastic package delamination, Proceedings of 23rd IEEE/CPMT International Electronics Manufacturing Technology Symposium, 1998, 105–111, DOI: 10. 1109/IEMT.1998.731047.
  10. Corbin S.F., High-temperature variable melting point Sn-Sb lead-free solder pastes using transient liquid-phasepowder processing, “Journal of Electronic Materials”, 2005, Vol. 34, 1016–1025, DOI: 10.1007/s11664-005-0089-2.
  11. Kariya Y., Niimi T., Suga T., Otsuka M., Isothermal fatigue properties of Sn-Ag-Cu alloy evaluated by micro size specimen. “Materials Transactions”, Vol. 46, 2005, 2309–2315, DOI: 10.2320/matertrans.46.2309.
  12. Intel Information Packaging Databook, Chapter 14, “Ball Grid Array (BGA) Packaging”,
  13. Forsyth M., Seter M., Tan M.Y., Hinton B., Recent developments in corrosion inhibitors based on rare earth metal compounds. “Corrosion Engineering Science and Technology”, Vol. 49, No. 2, 2014, 130–135, DOI: 10.1179/1743278214Y.0000000148.
  14. Malaquias J.C., Steichen M., Thomassey M., Dale P.J., Electrodeposition of Cu–In alloys from a choline chloride based deep eutectic solvent for photovoltaic applications, “Electrochimica Acta”, Vol. 103, 2013, 15–22, DOI: 10.1016/j.electacta.2013.04.068.
  15. Directive 2002/95/EC of The European Parliament and of the Council of 27 January 2003, On the restriction of the use of certain hazardous substances in electrical and electronic equipment.
  16. Lai Z., Ye D., Microstructure and fracture behavior of non eutectic Sn–Bi solder alloys. “Journal of Materials Science: Materials in Electronics”, Vol. 27, 2016, 3182–3192, DOI: 10.1007/s10854-015-4143-4.
  17. Wang F., Li D., Zhang Z., Wu M., Yan C., Improvement on interfacial structure and properties of Sn–58Bi/Cu joint using Sn–3.0Ag–0.5Cu solder as barrier, “Journal of Materials Science: Materials in Electronics”, Vol. 28, 19051–19060, DOI: 10.1007/s10854-017-7859-5.
  18. Osório W.R., Spinelli J.E., Afonso C.R.M., Peixoto L.C., Garcia A., Microstructure, corrosion behavior and microhardness of a directionally solidified Sn–Cu solder alloy. “Electrochimica Acta”, Vol. 56, No. 24, 2011, 8891–8899, DOI: 10.1016/j.electacta.2011.07.114.
  19. Drienovsky M., Trnkova L.R., Martinkovic M., Ozvold M., Cernickova I., Palcut M., Janovec J., Influence of cerium addition on microstructure and properties of Sn-Cu-(Ag) solder alloys. “Materials Science and Engineering A”, Vol. 623, 2015, 83–91, DOI: 10.1016/j.msea.2014.11.033.
  20. Liu M., Yang W., Ma Y., Tang C., Tang H., Zhan Y., The electrochemical corrosion behavior of Pb-free Sn-8.5Zn-XCr solders in 3.5 wt.% NaCl solution. “Materials Chemistry and Physics”, Vol. 168, 2015, 27–34, DOI: 10.1016/j.matchemphys.2015.10.003.