Development of Adaptive Control for an Asymmetric Quadcopter

eng Artykuł w języku angielskim DOI: 10.14313/PAR_237/29

wyślij Ryszard Beniak, Oleksandr Gudzenko Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Computer Science

Pobierz Artykuł


The paper presents an adaptive control algorithm for an asymmetric quadcopter. For determining the control algorithm, the identification was made, and an identification algorithm is presented in the form of a recursive method. The control method is realized using inverse dynamics, full state feedback and finally adaptive control method. The algorithms for the off-line and on-line identification of quadcopter model parameters are also presented. The paper shows the effectiveness of the selected algorithm on the example of the movement along a given trajectory. Finally, recommendations of the application of these different methods are made.


adaptive control, full state feedback, inverse dynamics, Quadcopter, wind

Opracowanie sterowania adaptacyjnego dla quadrocoptera asymetrycznego


W pracy przedstawiono algorytm sterowania adaptacyjnego dla asymetrycznego quadrocoptera. W celu określenia sterowania zrealizowano identyfikację parametrów i przedstawiono algorytm identyfikacji w formie metody rekurencyjnej. Metoda sterowania realizowana jest z wykorzystaniem dynamiki odwrotnej, przesuwania biegunów oraz sterowania adaptacyjnego. Zaprezentowano algorytmy identyfikacji parametrów modelu quadrocoptera w trybie off-line i on-line. W artykule przedstawiono skuteczność wybranych algorytmów na przykładzie ruchu wzdłuż podanej trajektorii. Na zakończenie artykułu przedstawiono zalecenia dotyczące stosowania różnych metod sterowania.

Słowa kluczowe

odwrotna dynamika, przesuwanie biegunów, quadrocopter, sterowanie adaptacyjne, wiatr


  1. Voos H., Nonlinear State-Dependent Riccati Equation Control of a Quadrotor UAV, Conference: ComputerAided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 2006 IEEE, Munich, Germany, 2006, 2547–2552, DOI: 10.1109/CACSD-CCA-ISIC.2006.4777039.
  2. Dong W., Gu G.Y., Zhu X., Ding H., Solving the Boundary Value Problem of an Under-Actuated Quadrotor with Subspace Stabilisation Approach, “Journal of Intelligent and Robotic Systems”,Vol. 80, Issue 2, November 2015, 299–311, DOI: 10.1007/s10846-014-0161-3.
  3. Zhaoa W., Go T.H., Quadcopter formation flight control combining MPC and robust feedback linearization, “Journal of the Franklin Institute”, Vol. 351, Issue 3, March 2014, 1335–1355, DOI: 10.1016/j.jfranklin.2013.10.021.
  4. Altug E., Ostrowski J.P., Mahony R., Control of a Quadrotor Helicopter Using Visual Feedback, Proceedings of the 2002 IEEE, International Conference on Robotics & Automation, Washington, DC, May 2002, 72–77.
  5. Dikmen İ.C., Arısoy A., Temeltaş H., Attitude Control of a Quadrotor, 4th International Conference on Recent Advances in Space Technologies, Istanbul, 2009, 722–727, DOI: 10.1109/RAST.2009.5158286.
  6. Altug E., Ostrowski J.P., Taylor C.J., Control of a Quadrotor Helicopter Using Dual Camera Visual Feedback, “The International Journal of Robotics Research”, Vol. 24, No. 5, May 2005, 329–341, DOI: 10.1177/0278364905053804.
  7. Bemporad A., Rocchi C., Decentralized Hybrid Model Predictive Control of a Formation of Unmanned Aerial Vehicles, Decisionand Control and European Control Conference (CDC-ECC), Orlando, FL, 2011, 7488–7493, DOI: 10.1109/CDC.2011.6160521.
  8. El-Badawy A., Bakr M.A., Quadcopter Aggressive Maneuvers along Singular Configurations: An Energy- -Quaternion Based Approach, “Journal of Control Scienceand Engineering”, Vol. 2016, ArticleID 7324540, DOI: 10.1155/2016/7324540.
  9. Bolandi H., Rezaei M., Mohsenipour R., Nemati H., Smailzadeh S., Attitude Control of a Quadrotor with Optimised PID Controller, “Intelligent Control and Automation”, Vol. 4, No. 3, 2013, 335–342, DOI: 10.4236/ica.2013.43039.
  10. Tayebi A., McGilvray S., Attitude Stabilization of a VTOL Quadrotor Aircraft, “IEEE Transactionson on Control Systems Technology”, Vol. 14, No. 3, May 2006, 562–571, DOI: 10.1109/TCST.2006.872519.
  11. Efraim H., Shapiro A., Weiss G., Quadrotor with a Dihedral Angle: on the Effects of Tilting the Rotors Inwards, “Journal of Intelligent & Robotic Systems”, November 2015, Vol. 80, Issue 2, 313–324, DOI: 10.1007/s10846-015-0176-4.
  12. Huang H., Hoffmann G.M., Waslander S.L., Tomlin C.J., Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering, 2009 IEEE International Conference on Robotics and Automation, May 2009, 3277–3282, DOI: 10.1109/ROBOT.2009.5152561.
  13. Lupashin S., Schöllig A., Sherback M., D’Andrea R., A simple learning strategy for high-speed quadrocopter multi-flips, 2010 IEEE International Conference on Robotics and Automation, May 2010, 1642–1648, DOI: 10.1109/ROBOT.2010.550945214.
  14. Zemalache K.M., Beji L., Maaref H., Control of a drone: study and analysis of the robustness, “Journal of Automation, Mobile Robotics & Intelligent Systems”, Vol. 2, No. 1, 2008, 33–42.
  15. Selfridge J.M., Tao G., A multivariable adaptive controller for a quadrotor with guaranteed matching conditions, “Systems Science & Control Engineering”, Vol. 2, 2014, Issue 1, 24–33, DOI: 10.1080/21642583.2013.879050.
  16. Islam S., Liu P.X., El Saddik A., Nonlinear adaptive control for quadrotor flying vehicle, “Nonlinear Dynamics”, Vol. 78, October 2014, Issue 1, 117–133, DOI: 10.1007/s11071-014-1425-y.
  17. Tomashevich S., Belyavskyi A., Passification Based Simple Adaptive Control Of Quadrotor, “IFAC-PapersOnLine”, Vol. 49, Issue 13, 2016, 281–286, DOI: 10.1016/j.ifacol.2016.07.974.
  18. Beniak R., Gudzenko O., Control methods design for a model of asymmetrical quadrocopter, “Jornal of Automation, Mobile Robotics and Intelligent Systems, Vol. 10, No. 2, 2016, 40–49, DOI: 10.14313/JAMRIS_2-2016/14.
  19. Beniak R., Gudzenko O., Comparing control algorithms of quadrocopters to implement their a typical maneuvers, [in:] 21th International Conference on Methods and Models in Automation and Robotics (MMAR), Aug 2016, DOI: 10.1109/MMAR.2016.7575292.
  20. Feng G., Lozano R., Adaptive control systems, Reed Educational and Professional Publishing Ltd, Guildford 1999.
  21. Beard R.W., McLain T.W., Small Unmanned Aircraft: Theory and Practice, 2012.
  22. Dryden Wind Turbulence Model [ help/aeroblks/drydenwindturbulencemodelcontinuous. html].
  23. Beniak R., Gudzenko O., Online identification of wind model for improving quadcopter trajectory monitoring, E3S Web Conf., International Conference Energy, Environment and Material Systems (EEMS 2017), Vol. 19, 2017, DOI: 10.1051/e3sconf/20171901028.
  24. He R., Wei R., Zhang Q., UAV autonomous collision avoidance approach, “Automatika”, Vol. 58 (2), 2017, 195–204, DOI: 10.1080/00051144.2017.1388646.