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Analysis of mechatronic systems second class  
by the matrix method

Jerzy Smyczek
Department of Electronics and Computer Science, Koszalin University of Technology

Abstract: In the paper an analysis of mechatronic systems by 
using matrix method has been described. On the base a real matrix 
method system is presented a model the member: electrics, elec-
tronics, mechanics, hydraulics and others in connections with feed-
back and without them has been examined. In the end an example 
at a control bus door for this purpose obtaining minimum time con-
trol has been presented. 
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1. Introduction

Investigating of dynamics in mechatronics systems which 
contain the members: electrics, electronics, mechanics, 
hydraulics, thermals, and others is important matter becau-
se the system has to be stable with regard for same parame-
ters. In general, members  of mechatronic systems are mul-
tipoles. In technical applications the system may be pre-
sented as two-port networks. The one is assumed as linear.

Fig. 1. A two-port network in general shape
Rys.1. Czwórnik w postaci ogólnej

It is meaning that ( )1 2 1 2, , ,f X X R R is linear function. 
A separate important problem is defining an amplitude range 
on surrounding at working point. The signals 1 2 1 2, , ,X X R R
are Laplace or Fourier transform.

 ( )X X s= , ( )R R s=  or  ( )X X jw= , ( )R R jω=   (1)

The two-port networks are 
described in form of differen-
tial or integrated equations. 
After Laplace (or Fourier) 
transformation the couple of 
linear equations have been got. 
In works on two-port networks 
are presented formulas betwe-
en different forms of matrix. 
To consider the cascade con-
nection of matrix has been 
got, as:

Tab. 1.  Quantity of mechatronic memebers
Tab. 1.  Wielkości członów mechatronicznych

System Electric Pneumatic Thermal Mechanic Mechanic 
(rotatable)

Potential  
R

Voltage 
U [V]

Pressure 
P [N/m2]

Temperature 
T [K]

Velocity  
V [m/s]

Angular 
velocity 
w [rd/s]

Flow  
X

Current 
I [A]

Flow (volume) 
V [m3/s]

Flow (mass) 
V [kg/s]

Force  
F [N]

Moment 
M [Nm]

 

1 2

1 2

R R
X X

   
= ⋅   −   

A ; 
11 12

2221

a a
a a

 
 ⋅
  

=A  (2)

2. Members of mechatronic systems  
and their connections

In the tab. 1 has been shown a quantity of mechatronic members.
With a progress of technique the new converters are be-

ing application, as for ex. ultrasonic, optics. In connection 
with it following mechatronic members may be presented:
 – an electric-electronic member

 

1 2

1 2

U U
I I

   
= ⋅   −   

A  (3)

 – a member as generator

 

1 2

1 2

U
M I
w   

= ⋅   −   
A  (4)

 – a member as motor

 

1 2

1 2

U
I M

w   
= ⋅   −   

A  (5)

 –
 – a member as electromagnetic
 –

 

1 2

1 2

U V
I F

   
= ⋅   −   

A  (6)

 – a member as hydraulic (or pneumatic) converter

 

1 2

1 2

U P
I ϑ

   
= ⋅   −   

A  (7)

 – a member as thermal converter

 

1 2

1 2

U T
I φ

   
= ⋅   −   

A  (8)
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In connections of members the output signals at a pre-
vious member and input signals at a following member 
have to get the same physical character.

3. Input  and output impedance  
of a member

Knowing a four-terminal member the impedance of mem-
bers has been defined. Analogical to definition using in 
electrics 

 

1

1
in

UZ
I

=    and  2

2
out

UZ
I

=  (9)

The definition has been extended for different mecha-
tronics members

 

1

1
in

RZ
X

=    and   2

2
out

RZ
X

=  (10)

When the above values to present in frequency

 

1

1

( )( )
( )in

R jZ j
X j

ww
w

=   2

2

( )( )
( )out

R jZ j
X j

ww
w

=  (11)

Then, it may be calculation in frequency band of 
a work member.

a) A cascade connection of members

If the condition (13) is not satisfy or impossible to esti-
mation, then the matrix method should be applying in or-
der to avoid a errors [7 ].

b) A system with feedback

Fig. 2.  Cascade connection of members
Rys. 2. Połączenie kaskadowe członów

Fig. 3. A cascade connection of matrices
Rys. 3. Połączenie kaskadowe macierzy

Fig. 4. A system with feedback at parallel. The arrows are 
meaning of signal at direction

Rys. 4. System ze sprzężeniem zwrotnym równoległym

 

(1) (2)
2 2
(1) (2)
2 2

R R
X X

<< ,  
(1) (3)
2 2
(1) (3)
2 2

R R
X X

<<  (15)

If the relation (15) is satisfied, then a block diagram 
may be presented as one-thread diagram.

c) The connection of parallel members

Fig. 5. The connection of parallel members
Rys. 5. Połączenie równoległe członów

Fig. 6.  The one-thread block diagram
Rys. 6.  Jednonitkowy schemat blokowy

The connection presented in the fig. 3 may be represen-
ted by transmittance

 
1 2 k

YT G G G
X

= = ⋅ ⋅ ⋅…  (12)

When a following member do not load a previous 
member. Meaning, that

 1
( ) ( )

k kin outZ j Z jw w
+

>>  (13)

Result matrix of the system is

 
⋅= ⋅ ⋅

res 1 2 k
…A A A A  (14)

The mutual loading should be satisfying the conditions

 

(1) (2)
2 1
(1) (2)
2 1

R R
X X

<< ,   
(1) (3)
2 1
(1) (3)
2 1

R R
X X

<<  (16)

If the relations (16) are satisfying then diagram may be 
presented in shape
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4. Matrix of systems with negative 
feedback

4.1. Connection with feedback of parallel-series

Into consideration (23) and (24) in (22) we are having

 
( )( ) ( )out outk f

in in

R X
X R

   
= + ⋅   

   
D H

 (26)

In the result of matrix 

 
( ) ( )k f= +

res
H D H

 (27) 

H – type is as follows (24).

4.2. Connection with feedback at series-series
Fig. 7. A block’s diagram with feedback of parallel-series
Rys. 7. Schemat blokowy ze sprzężeniem zwrotnym równole-

gło-szeregowym

Equations on input

 
( ) ( )
1 2 0k f

inX X X− − =  (17)

where

 
( ) ( )
1 2
k f

inX X X= −  (18)

and

 
( ) ( )
1 2
k f

inR R R= =  (19)

It means negative feedback.
Output equations 

 
)(

1
)(

2
fk

out XXX ==  (20)

and

 
)(

1
)(

2
f

out
k RRR −+−  (21)

Now, the vector [ ], t
out inR X  is 

( ) ( ) ( ) ( )
2 1 2 1
( ) ( ) ( ) ( )
1 2 1 2

k f k f
out

k f k f
in

R R R R R
X X X X X

    + 
= = +      +            

(22)

The vector’s components in (22) having form

 

( ) ( )
det2 2( )

( ) ( )
1 1

k k
k

k k

R X
X R

   
= ⋅   

      
D

 (23)
and

 

( ) ( )
det1 2( )

( ) ( )
2 2

f f
f

f f

R X
X R

   
= ⋅   

      
H

 (24)

For instance a connection between D and G = H is 
the following:

If        11 12

21 22

g g
g g

 
 
 

=G   for  22 21

12 11

g g
g g

 
 
 

=D  (25)

Fig. 8. A block’s diagram with feedback of series-series
Rys. 8. Schemat blokowy ze sprzężeniem zwrotnym szeregowo-

szeregowym

Equations on input

 ( ) ( )
1 2 0k f

inR R R− − =  (28)

where
 ( ) ( )

1 2
k f

inR R R= −  (29)

and
 ( ) ( )

1 2
k f

inX X X= =  (30)

It means negative feedback.

Output equations

 ( ) ( )
2 1 0k f

outR R R− − =  (31)

and
 ( ) ( )

2 1
k f

outX X X= =  (32)

Now, the vector [ ], t
out inR R  is 

 

( ) ( ) ( ) ( )
1 2 1 2
( ) ( ) ( ) ( )
2 1 2 1

k f k f
out

k f k f
in

R R R R R
R R R X R

    + 
= = +      +              (33)
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The vector’s components in (33) having form

 

( ) ( )
1 1( )
( ) ( )
2 2

k kdef
k

k k

R X
R X

   
= ⋅   

      
Z

 (34)
and

             
( ) ( )
2 2( )
( ) ( )
1 1

f fdef
f

f f

R X
R X

   
= ⋅   

      
C  (35)

For instance a connection between Z and C is the fol-
lowing:

If  11 12

21 22

z z
z z

 
 
 

=Z    for   22 21

12 11

z z
z z

 
 
 

=C  (36)

Into consideration (34) and (35) in (33) we are having

 ( )( ) ( )out outk f

in in

R X
R X

   
= + ⋅   

   
Z C  (37)

In connection with it, the result matrix Z-type of sys-
tem having form 

( ) ( )k f= +
res

Z Z C
              (38) 

4.3.  A connection with feedback  
of parallel-parallel

Output equations 

 
( ) ( )
2 1
k f

outX X X= +  (42)
and

 
( ) ( )
2 1
k f

outR R R= =  (43)

Now, the vector [ ], t
in outX X  is calculated 

 

( ) ( ) ( ) ( )
1 2 1 2
( ) ( ) ( ) ( )
2 1 2 1

k f k f
in

k f k f
out

X X X X X
X X X X X

    + 
= = +      +              

(44)

The vector’s components in (44) are having form

 

( ) ( )
1 1( )
( ) ( )
2 2

k kdef
k

k k

X R
X R

   
= ⋅   

      
Y

 (45)
and

 

( ) ( )
2 1( )
( ) ( )
1 2

f fdef
f

f f

X R
X R

   
= ⋅   

      
E

 (46)

For instance, a connection between Z and C is the fol-
lowing:

 If   11 12

21 22

y y
y y

 
 
 

=Y
 
 
for  22 21

12 11

y y
y y

 
 
 

=E
 

(47)

Then the expression (44) has a form

 
( )( ) ( )in ink f

out out

X R
X R

   
= + ⋅   

   
Y E

 (48)

In connection with it, the result matrix Y-type of sys-
tem is having a formula 

 ( ) ( )k f= +
res

Y Y E  (49) 

4.4.  A connection with feedback  
of series-parallelFig. 9. A block’s diagram with feedback of parallel-parallel

Rys. 9. Schemat blokowy ze sprzężeniem zwrotnym równole-
gło-równoległym

Equations on input

 
( ) ( )
1 2
k f

inX X X= +  (39)

where

 
( ) ( )
1 2
k f

inX X X= −  (40)

and

 
( ) ( )
1 2
k f

inR R R= =  (41)

It means negative feedback.

Fig. 10. A block’s diagram with feedback of series-parallel
Rys. 10. Schemat blokowy ze sprzężeniem zwrotnym szerego-

wo-równoległym

Equations on input

 
( ) ( )
1 2 0k f

inR R R− + =  (50)
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where

 
( ) ( )
1 2
k f

inR R R= −  (51)

and

 
( ) ( )
1 2
k f

inX X X= =  (52)

It means negative feedback.

Output equations 

 
( ) ( )
2 1
k f

outR R R= =  (53)

and

 
( ) ( )
2 1
k f

outX X X= +  (54)

Now, it will be calculated 

 

( ) ( ) ( ) ( )
1 2 1 2
( ) ( ) ( ) ( )
2 1 2 1

k f k f
in

k f k f
out

R R R R R
X X X X X

    + 
= = +      +              

(55)

It notice, that

 

( ) ( )
1 1( )
( ) ( )
2 2

k kdef
k

f k

R X
X R

   
= ⋅   

      
H

 (57)
            
and

 

( ) ( )
2 2( )
( ) ( )
1 1

f fdef
f

f f

R X
X R

   
= ⋅   

      
D

 (58)

For instance a connection between of components of 
matrix G and D is:

 If   11 12

21 22

g g
g g

 
 
 

=G    for  22 21

12 11

g g
g g

 
 
 

=E  (59)

The expression (55) with regard to (57) and (58) ha-
ving form

  (60)

In connection with it, the result matrix H-type of sys-
tem is 

 ( ) ( )k f= +
res

H H D  (61)

5. Concluding remarks

A presentation of systems in shape at a block diagram 
where members are two-port networks and describing by 
matrix is making possible a resultant matrix of system. 
By using at computer base of matrix transformation two-
port networks the algorithm of calculation the matrix is 
quite simple.

6. Example

It should calculate a time constant at a integral circuit in 
feedback path at a control bus door like that a settling 
time will be minimum.

Fig. 11. A block diagram of matrix the control system door
Rys. 11. Schemat blokowy macierzy systemu sterowania drzwiami

A1 – matrix of electronic amplifier
A2 – matrix of power converter electric-hydraulic
A3 – matrix of load
A4 – matrix of shift-voltage converter
A5 – matrix of integral circuit

The input parameters are voltage-current and output 
parameters are force and velocity. The scheme in fig. 11 
may be reduction for the shape of fig. 12.

Fig. 12. A connection of feedback a series-parallel
Rys. 12. Macierzowy schemat blokowy ze sprzężeniem zwrotnym 

szeregowo-równoległym

in which

 
( )

1 2 3
( )

4 5

k

f

A A A A
A A A

= ⋅ ⋅ 


= ⋅ 
 (62)

In the ex ample a response is Xout for unit step is 
Rout  =  1/s. Using with the matrix Hres

 we have

 11

1( )
( )out inX RT s

a s
=  (63)

Where L(s), M(s) are polynomials with regard for s.

 If  ( ) 2 22 nM s s sα w= + +  (64)

Is a oscillation type, then settling time (with accura-
cy 2 %) getting

 

4
Tt a

=  (65)

where a – coefficient by the s1.
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For higher order of systems the same formula is applied 
then is estimation. 

In connection with that ( )ca f T= , Tc – time constant. 
It should minimize that value

  min ( )cf T  (66)

Algorithm of calculating Tc for presented system is 
the following.

START
¯

Calculate resultant matrix of 
main line

( )
1 2 3

kA A A A= ⋅ ⋅

Calculate resultant matrix of 
feedback line

( )
3 4

fA A A= ⋅
¯

Change of chain matrix to 

hybrid matrix ( ) ( )k kA H⇒
Change of chain matrix to 

hybrid matrix ( ) ( )k kA H⇒
¯

Calculate resultant hybrid matrix 
( ) ( )k f

resH H H= +
¯

Change of resultant hybrid matrix to chain matrix 

res resH A⇒
¯

Determine parameter a11(s) of resultant chain matrix
¯

Calculate transfer function
 11

1( )
( )out inX RT s

a s
=

¯

END

7. Conclusion

In the paper the analyses of systems in which may be 
presented as two-port networks have been considered. To 
calculation the matrix method has been used. The con-
ditions affording possibilities reduction at systems have 
been expressed.

The matrix of systems with feedback at different making 
possible to calculate a result matrix of systems in a quite 
simple. An example of control system algorithm has been 
presented in purpose a reckoning of a parameter that se-
cure of minimum control time.
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Appendix 1 – two port’s matrixes

Two port’s matrixes are:

 

(A1)

Define next original matrices

 

2 2 11 12

21 221 1

22 21

12 11

if for ex.

then

R X z z
z zR X

z z
z z

     
=     

    
 
 
 

⋅ =

=

C Z

C
 (A2)

 

2 2 11 12

21 221 1

22 21

12 11

if for ex.

then

R X g g
g gX R

g g
g g

     
=     

    
 
 
 

⋅ =

=

D G

D
 (A3)

 

2 1 11 12

21 221 2

21 22

11 12

if for ex.

then

X R y y
y yX R

y y
y y

     
=     

    
 
 
 

⋅ =

=

E Y

E
 (A4)

and

 

2 2

1 1

-1where
X R
X R

   
=   

   
⋅ =J J C

 (A5)
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2 2

1 1
where

X R
R X

   
=   

   
⋅ = -1L L D  (A6)

 

2 2

1 1

-1where
R X
R X

   
=   

   
⋅ =M M E  (A7)

This type of matrixes are using in matrix systems 
with feedback.

Appendix 2 – two port’s matrixes 
with negative feedback
Appendix 2 – Matrices of two-port networks with nega-
tive feedback

No. 1. Kind of connection  
parallel - series

( ) ( )f k

res
= +H H D

( ) ( )
1 1( )
( ) ( )
2 2

f f
f

f f

R X
X R

   
= ⋅   

      
H

( ) ( )
2 2( )
( ) ( )
1 1

k k
k

k k

R X
X R

   
= ⋅   

      
D

No. 2. Kind of connection  
series - series

)()( fk
res CZZ +=

( ) ( )
1 1( )
( ) ( )
2 2

k k
k

k k

R X
R X

   
= ⋅   

      
Z

( ) ( )
2 2( )
( ) ( )
1 1

f f
f

f f

R X
R X

   
= ⋅   

      
C

No. 3. Kind of connection  
parallel - parallel

)()( fk
res EYY +=

( ) ( )
1 1( )
( ) ( )
2 2

k k
k

k k

X R
X R

   
= ⋅   

      
Y

( ) ( )
2 1( )
( ) ( )
1 2

f f
f

f f

X R
X R

   
= ⋅   

      
E

No. 4. Kind of connection  
series - parallel

( ) ( )k f= +
res

H H D
( ) ( )
1 1( )
( ) ( )
2 2

k k
k

k k

R X
X R

   
= ⋅   

      
H

( ) ( )
2 2( )
( ) ( )
1 1

f f
f

f f

R X
X R

   
= ⋅   

      
D
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Macierzowa analiza systemów mechatronicznych 
drugiego rzędu

Streszczenie: W pracy opisano analizę układów mechatronicz-
nych drugiego rzędu za pomocą metody macierzowej. Wyzna-
czono oryginalne macierze wypadkowe członów o różnych po-
łączeniach z ujemnym sprzężeniem zwrotnym. Na podstawie re-
alnego systemu mechatronicznego, systemu sterowania drzwia-
mi autobusu, wyznaczono minimalny czas zamykania drzwi.

Słowa kluczowe: metody macierzowe, teoria systemów, sprzę-
żenie zwrotne, mechatronika




