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1. Introduction

People naturally are able to understand and predict to a cer-
tain extent actions of others, which is the foundation for good 
communication and interaction in daily life. Like for humans, 
for robots it is often very important to understand human acti-
vities at an early stage before they are completely executed, in 
order to be able to provide a timely and proper reaction [1]. 
Human activity recognition (HAR) can be viewed as the task 
of identification, and naming of human-performed activities 
with the help of artificial intelligence (AI) using sensory data. 
Understanding human activity is a very important aspect of 
intelligent machine vision [2]. Human activities are often influ-
enced by natural feelings such as tiredness, exhaustion, loss of 
attention, low patience, need for rest, limited physical strength, 
etc and these result in low efficiency when it comes to perfor-
ming necessary tasks. Hence, HAR is important for implemen-
tation in human assisting robots to support human tasks [3]. 
The examples are monitoring crime rates using HAR, HAR 
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for elderly people care observes activity patterns and reacts 
in case of change of behavior or an unrecognized event. HAR 
applied for monitoring physical activities helps to manage and 
reduce the risk of contracting health problems such as obesity, 
diabetes, cardiovascular diseases, etc. It also helps to improve 
some performances for example in sports activities by detec-
ting and estimating human poses with the arm to improve 
the motion dynamics. HAR also enables creation of smart 
home environments.

Moreover, medical diagnosis can be made using physiological 
measurements and observation, e.g recognizing activities like 
smoking, sunbathing, etc can help diagnose patients’ health 
issues. Human activity prediction (HAP) can be referred to as 
a process of early inferring human activity from partial obse-
rvations. HAP approaches basically aim at interpreting human 
actions, gestures, behaviors and correctly classifying them into 
respective categories before their complete execution [4].

The topics of HAP and HAR have brought a significant 
contribution to technological advancements. The main diffe-
rence between HAR and HAP is the decision time. HAP is 
more important for before-the-fact quick-decision making situ-
ation rather than after-the-fact conclusion using HAR (Fig. 1). 
Nevertheless, both play a significant role in human-human inte-
raction [5], human-object interaction [6], and human-machine 
interaction [7, 8]. This research domain has highly contribu-
ted in many areas including sports [9], robotics [10], secu-
rity [11], healthcare [12]. The most common sensors used for 
data recording include RGBD cameras [13, 14], CCTV-came-
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ras [15], wearable sensors [16], radio frequency identification 
(RFID) tags [9], gyroscopes and accelerometers [17, 18]. The 
problem of HAR and HAP have been challenging for recent 
years. However, due to the availability of low cost and low 
power sensors, bigger computational resources, advancements 
in computer vision, machine learning (ML) and AI, there is 
significant growth in these research areas. HAP is implemen-
ted in various environments including factory facilities allowing 
effective worker-robot collaboration, road navigation by self-
-driving vehicles, smart offices, etc. During HAP system design, 
it is crucial to consider factors such as the type of available 
devices, method of analysis, and area of application [19]. Obta-
ining reliable results is also highly dependent on the quality of 
human pose representation and activity prediction methods. 
Several methods have been proposed for HAP and HAR and 
thanks to these methods, researchers are able to explore every 
thinkable aspect of HAR and HAP. In this work, we will sum-
marize the Artificial Neural Networks (ANN), Support Vector 
Machine (SVM) approach, probabilistic methods, and decision 
tree approaches. Each of the specific methods often shows vary-
ing performance depending on the application.

2. Objective of the Paper

A recent review [20] gives an elaborated overview focusing on 
existing deep learning-based approaches in HAR and HAP. It 
explains methodologies, along with related features considered, 
and datasets used in previous works. In this paper, we present 
the state-of-art methods in HAP and HAR. We review the 
various contributions brought by different HAP methods. The 
types of sensors, data types, and the corresponding advantages 
and challenges associated with these methods are presented. 
The structure of the paper is as follows: section 3 presents 
a review of the sensors used for HAP and HAR. The sources 
and types of input data, and the data acquisition techniques 
associated with them are described. Section 4 presents a review 
of the machine learning approaches used for both complex and 
simple activities prediction. It continues elaborate the types 
of interactions involved in human activities, the stages of the 
data processing, and the challenges of HAP and HAR works. 
Section 5 presents the discussion of the reviewed state of the 

art methods of HAP. It continues to give the overall compa-
rison between the machine learning methods, advantages and 
disadvantages of these methods considering the factors such as 
accuracy, computing efficiency, time consumption, etc. Section 
6 describes the conclusion of our work.

3. HAP/HAR Devices and Datasets

The type of devices and data used for HAP depend on the 
intended application. Activity data can be obtained from 
various types of sources, the most common are the following 
sources: wearable sensors, video cameras, RFID systems, and 
Wi-Fi devices [21]. Data can be recorded both ways: remo-
tely (contactless) e.g radars, videos, or directly with physical 
contact with a person like e.g accelerometers and gyroscopes. 
Many years ago, sensor data collection for HAP was very 
expensive and challenging but with the advancement of tech-
nology, this task has become relatively easier, and several open 
source datasets are made available for public use.

3.1. HAP/HAR Devices
3.1.1. Vision-based Devices (Camera)
Although HAP and HAP tasks differ as illustrated in the 
Fig.  1, common methods may be used for sensory data collec-
tion. Vision data consist of a series of video frames as inputs 
and a processed output is usually a label that identifies the 
activity. In the paper [22], actions were recognized using static 
images. Many types of cameras are applied for data collection 
including RGB-D cameras and classical CCTV cameras. CCTV 
cameras observe the subject and the environment where the 
activity is being performed and deliver classical images. Acti-
vities are recognized using machine learning models [23, 24]. 
The data provided by the RGB-D camera is advantageous in 
the sense that it delivers several modalities such as RGB ima-
ges, depth, audio, etc which improves the amount of extrac-
ted information and hence increases accuracy of the resulting 
predictions [18, 25]. In CCTV predictions accuracy is strongly 
dependent on lightning and background color, which is rather 
not the case in RGB-D. The depth information of RGB-D 
camera can be used to develop 3D skeleton-based HAP. Ske-
leton-based HAP and HAR use neural networks methods to 

Fig. 1. HAR vs HAP taking into account picking the box activity captured in 
Warsaw University of Technology laboratory
Rys. 1. Interpretacja HAR i HAP dla czynności obejmującej podniesienie
pudełka – zbór danych Politechniki Warszawskiej
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extract the skeleton joints position in the 3D scene from recor-
ded RGB-D images. Some works [26–28] used RGB-D data for 
HAP and HAR, others used only the depth data [29–31] or the 
skeleton data [1, 32]. Vision-based systems are advantageous 
in the sense that they are not invasive. It can be tedious for 
a disabled person or elderly to wear sensors to record data. 
A single RGB-D camera can be used to replace several sensors. 
However, cameras raise concerns about privacy issues and can 
be hacked [33].

3.1.2. Wearable Devices
A wearable sensor device consists of a sensory set integrated in 
a wearable system or can be directly attached to the body to 
monitor human activity, e.g inertial sensors [16, 34–38]. Due to 
the stressful and invasive nature of attachable sensors, weara-
ble sensor approaches are used more often. Examples include 
smart phones’ gyroscope and accelerometers, smart watches 
[17, 39–42]. Wearable sensory devices are advantageous because 
they offer higher privacy unlike cameras, and they can collect 
more accurate physiological data.

3.1.3. RFID Devices
RFID is a wireless communication method that detects 
a body using electromagnetic or electrostatic coupling in 
the radio frequency portion of the electromagnetic spectrum. 
It consists of an RFID tag and a reader. Data is collected by 
placing the RFID tag close enough to the user, and a reader 
collects the data when the user is in the sensing range. RFID 
tags can be of passive or active type. Passive type uses the 
energy from the reader to operate, on the other hand, active 
tags operate with integrated battery. Compared to passive 
tags, the sensing range of active tags is often larger, howe-
ver passive tags are more cost-effective [24]. During sensing, 
multiple RFID tags are attached to the moving parts of the 
body. During motion, radio frequency is constantly received 
by the reader antennae. The difference in the timings of 
signals reception from various tags is used to calculate the 
motion of the body i.e phase difference of the radio frequ-
ency signal caused by change in relative distance between 
antennae and tags during movement enable tracking of the 
body parts in 3D scenes. In the paper [43], an adaptive gene-
ralized ANN used RFID data to track human poses in real-
-time. Recorded RFID data is rather prone to noise created 
by moving people and objects, and data processing can be 
a challenging task because features extraction from noisy 
data is often required [44]. However, some researches decide 
to feed RFID signals directly to the processing algorithm for 
HAR [45], without any filtering. RFID systems are robust to 
dynamic environments, which implies they are flexible and 
adaptable to changing environmental setting e.g wareho-
uses, manufacturing facilities, home environments, outdoor 
environments, etc.

3.1.4. Wi-Fi Devices
Wi-Fi technology uses radio waves to transmit information 
through the air. It is often inexpensive and easy set up, which 
is a significant advantage. Researchers are working on using 
Wi-Fi devices to capture human activity data. Radio waves 
released by Wi-Fi transmitter are reflected by parts of the 
human body. Motion of humans and objects during HAR and 
HAP are sensed by tracking and analyzing the changes in the 
reflected signal caused by variation in wave propagation paths 
due to the movement. The data gathered using Wi-Fi trans-
mission show high quality and are used in machine learning 
algorithms [46–48]. Data are organized in the form of channel 
state information (CSI) matrix, which holds information on 
properties of the communication signal such as phase shifts, 
power decay, etc. In the paper [49] Adaptive Activity Cutting 

Age Algorithm (AACA) used amplitude information from the 
Wi-Fi device’s CSI to distinguish between body moving parts 
and non-moving parts during activity recognition. Results 
described in several other works such as [50, 51] showed the 
effectiveness of Wi-Fi devices in data acquisition for HAP and 
HAR applications. A limitation of Wi-Fi devices is their high 
sensitivity to dynamic environments [52].

3.2. HAP/HAR Datasets
Numerous datasets have been made publicly available for HAR 
and HAP research. Some examples of commonly used datasets 
are listed as follows;

CAD-60 and CAD-120 datasets: these datasets contain 
RGD-D videos of 4 people performing several activities in dif-
ferent settings e.g the living room, the office, and the kitchen, 
recorded using the Microsoft Kinect sensor. These activities 
are made of several atomic actions. The dataset consists of 
RGB images, depth images, and 3D skeleton data (x, y, z joints 
coordinates). CAD-60 [53] comprises of 60 RGB-D videos and 
CAD-120 [54] has 120 RGD videos. Some of the videos inc-
lude: having a meal, drinking water, opening a pill container, 
stacking books, etc.

Florence 3D action dataset: this dataset from Florence Uni-
versity contains 9 activities recorded using Kinect camera. 
There are 215 RGB-D videos in this dataset, activities were 
performed by 10 people. Some of the activities include; “answer 
the phone”, “read a watch”, “clap”, “stand up”, etc. The paper 
[55] used human skeleton data from Florence 3D dataset to 
recognize human actions based on joints positions.

UFC50 dataset: machine learning methods often consider 
pixels from RGB videos as input data. A good example of 
dataset to be used that way is UFC50. It contains youtube 
videos grouped into 50 categories, where each category com-
prises of varying number of sample videos. Videos are realistic, 
with varying viewpoints, objects, illumination, etc, and are not 
staged like in the case of many other datasets [56]. Examples 
of activities in this dataset include; “horse riding”, “basket-
ball”, “golf swing”, etc.

KTH dataset: this dataset consists of grayscale videos of 25 
individuals performing 6 activities in 4 different scenarios i.e 
“indoor”, “outdoor”, “outdoor with scale variation”, and “out-
door with different clothes” [57]. The variation in the scena-
rios enable the machine learning algorithm to be tested in the 
real world, which has varying scenes. Activity labels include 
“hand clapping”, “boxing”, “jogging”, “hand waving”, “wal-
king”, “running”.

Weizmann dataset: it is an action-focused dataset that con-
sists of RGB video data grouped in 10 actions performed by 
9 subjects [58]. The actions were recorded in a plain backgro-
und using a fixed camera. Some of the actions include “bend”, 
“jumping jack”, “jump”, etc.

UCI-HAR dataset: this dataset contains values of accelera-
tions and angular velocities along x,y, and z axes recorded at 
a rate of 50Hz, using embedded accelerometer and gyroscope 
in a smart phone that was attached to the waist of the subject 
[59]. A total of 6 activities were performed by 30 people. The 
activities include “standing”, “laying”, ”walking”, “walking 
upstairs”, “walking downstairs”, and “sitting”.

Motion Sense dataset: the motion sense dataset like the 
UCI-HAR dataset was recorded using the accelerometer and 
gyroscope embedded in a smart phone [60]. The phone was 
placed in the subject’s front pocket to capture angular velo-
city and acceleration of 24 people performing 6 activities labe-
led “downstairs”, “upstairs”, “walking”, “jogging”, “sitting”, 
and “standing”. The dataset contains times series information 
of the user’s altitude, yaw, pitch, row, angular velocity, and 
linear acceleration along the x, y and z axes for every perfor-
med activity.
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WiAR dataset: this is a Wi-Fi based human activity data-
set that comprises of 16 activities performed in 3 indoor envi-
ronments by 10 participants, with each participant executing 
an activity 30 times. The activities are classified into three 
categories:  1) upper body e.g high throw, toss paper, 2) lower 
body e.g forward kick, side kick, 3) whole body activities 
e.g squat, sit down. The Wi-Fi data consists of the Received 
Signal Strength Indicator (RSSI) and Channel State Informa-
tion (CSI) [61]

Wi-Fi dateset: It consists of 5 activities [62] carried out by 
30 people. The activities were performed in open indoor envi-
ronment as well as secluded indoor environments, since Wi-Fi 
signals can travel through walls. Activities include; “pick a pen 
from the ground”, “sit down and stand up”, “walking”, “fal-
ling from standing position”, “falling from sitting position”.

The dataset in [63] consists of 245 action instances for seven 
different activities over 28 days. The activities are; “Leave 
House”, “Use Toilet”, “Take a Shower”, “Go to Bed”, “Pre-
pare Breakfast”, “Prepare Dinner”, and “Get Drink”. These 
activities were recorded using RFID technology.

Once the data collection is completed, the next step invo-
lves processing the raw sensor data to make it usable by the 
machine learning algorithm. This is where preprocessing comes 
in. Good preprocessing of raw data is compulsory for high 
performance in HAP and HAR tasks [64]. Preprocessing steps 
typically depend on the type of data collected, but can gene-
rally be classified as the following: data cleaning, normaliza-
tion, transformation, feature extraction, and feature selection 
[65]. Data cleaning process involves fixing and regularizing the 
raw data i.e taking care of duplicates, inconsistent, missing 
data in the dataset. This is done by identifying the faults and 
data adjustment, updating or deleting the errors to obtain 
a complete data stream. In the case where video frames are 
used as input data, data cleaning may include resizing each 
frame into constant equal dimensions. Normalizing the data is 
the stage of preprocessing whereby the numeric values of the 
dataset are scaled to a common range without distorting the 
relative difference among them or losing the information. An 
example will be a Gaussian distribution technique of normali-
zation, or normalizing the pixel values by dividing each pixel 
with the maximum pixel value. This simplifies the computation 
effort during the training and testing phases. For accelerome-
ter data preprocessing, data segmentation is necessary because 
inertial data changes greatly with time. Many studies consider 
segments of 1 to 10 seconds [66], nevertheless the length of 
segments depends on the sensor sampling rate and application 
context. Raw data segments are later on transformed into ade-
quate formats according to the needs of the applied machine 
learning methods and tools [67].

Some transformation methods include the raw plot trans-
formation, spectrograms [68], etc. A raw plot transformation 
encodes inertial data e.g acceleration data into images by sca-
ling first the data into pixels assigning the values (e.g from 
range 0–255), then transforming each pixel to RGB channels 
pixels (e.g by segmentation of normalized data into 3 groups 
of integers) and finally extracting the color images representing 
the data. After such preprocessing the data are compatible 
with those used by machine learning algorithms [69]. A spec-
trogram is a type of data representation achieved by applying 
the Fourier transform on the segmented data, then computing 
the squared magnitude to obtain a representation of the input 
data as a function of time and frequency. A spectrogram repre-
sentation reduces variations in sensor data due to changes in 
the position of the sensor, change of sampling rate, altitude, etc 
[67]. Another common aspect of preprocessing is dimensiona-
lity reduction. This involves selection of relevant features from 
large datasets to facilitate detection of correlations between 
the features hence reducing the complexity and computation 

time without loss of important information. A commonly used 
method is Principal Component Analysis (PCA). PCA uses 
statistical approach by computing the eigen values and eigen 
vectors from the covariance matrix of the features. By ran-
king the eigen vectors according to their corresponding eigen 
values, the new features built from linear combinations of the 
original features can be obtained. Dimensionality reduction 
using laplacian eigenmaps is similar to PCA. They both emploi 
eigen vectors to obtain lower-dimensional data. However, PCA 
is a linear dimensionality reduction process, whereas Laplacian 
eigenmaps are based on non-linear data transformation [70].

Another approach is the Chi-square method, which uses the 
frequency distribution to assess the correlation between groups 
of features in order to select the best features. The recursive 
feature elimination technique proceeds by progressive elimina-
tion of features based on algorithm performance upon feeding 
the features, until the required number of features is obtained. 
Forward and backward features-selection is another method 
which operates by adding or discarding depending on their 
importance to the model performance. Feature selection algo-
rithms are very efficient for more complex problems, capturing 
relevant information is not always guaranteed. Another option 
used by machine learning methods discussed in this work such 
as SVM, decision trees and probabilistic approaches commonly 
use hand-selected features. While hand-selected features help 
improve the interpretability of the method, it can be chal-
lenging in case of limited knowledge about the problem, and 
when dealing with complex model architectures. ANN-based 
methods on the other hand do not necessarily use hand-selec-
ted features or feature-selection algorithm, but automatically 
extract features from the input data using several layers of 
inter-connected nodes [71]. The final step of data preprocessing 
is the splitting of data into training and testing sets.

4. HAP/HAR Methods

Human activities considered in this work are divided into 
three main groups based on the type of interaction involved 
in the activity namely; human-human interaction, human-
-object interaction, and human-machine interaction (Fig. 2). 
Recent advances in HAP enabled researchers to depict people 
in various settings and analyze their interactions with the envi-
ronment. Nevertheless, there still exist a number of challenges 
[72], some of which include variations in environment condi-
tions (illumination, background), prolonged and exhaustive 
data collection, and proper labeling of the data in order to 
identify and name the raw data, based on which the machine 
learning model will be trained. In HAP it is relevant to con-
sider what the person interacts with. This knowledge helps 
to predict the activities especially if the prediction takes into 
account the situation context. For example, if a person takes 
the cup, he or she will most likely be drinking. The various 
types of human interactions are further described below.

4.1. Types of Interactions
Human-human interaction: interactions between humans are 
usually characterized by their body positions, motion, and 
coordination. Human interactions can be subdivided into 
motion sequences, for example, a handshake interaction may 
consist of hand lifting, grasping, etc [21]. On the other hand, 
an activity may be made up of many human interactions like 
“greetings” activity may involve alternative interactions for 
example “handshake”, “hug” etc. Understanding human-human 
interactions offer a possibility that these interactions can be 
predicted or even controlled. Interacting body parts are of the 
first importance during activity classification, therefore they 
are given greater weights during feature representation. Hence 
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paying more attention to interacting body parts improves effec-
tiveness when capturing motion characteristics in time and 
space of single and simultaneously occurring activities [73]. 
During feature representation, body parts that interact with 
other objects are given more weight.

Human-object interaction: these are activities in which 
humans interact with objects around them. The aim is to 
localize and generate a relationship between them. Prediction 
of a human-object interaction requires knowledge about objects 
(e.g for what they can be used), possible interactions [74]. Xu 
et al. [75] proposed a scene perception architecture that pre-
dicted human tasks which involve objects. A common approach 
for inferring human-object interaction is by taking into account 
the distance between body parts and the object when learning 
the relationship between an object and a human [76, 77].

Human-machine interaction: these are activities in which 
people and automated systems interact with each other, e.g 
assistive robots and automated vehicles. Safety is a major 
issue during collaboration as the automated system has to be 
cautious of the end-user e.g how to navigate safely in the pre-
sence of humans, how to learn from user feedback [78]. Human-
-machine interaction can be remote (machine and human are 
separated in space and/or time), or proximate (shared human-
-robot environment). In the work [79] Tarik et al. Integrated 
HAR with robot trajectory planning so that a robot can per-
form the required task with high-level control by using reco-
gnized human activity as an input. It is often important that 
robots understand human activities in the tasks that require 
machine assistance, to be able to operate accordingly, hence 
the sensory data used in the AI algorithms must be of high 
quality. Figure 2 illustrates the above-discussed interactions.

Fig. 2. Examples of interaction 
types considered in HAP 
research works.
(a) human-object interaction, 
(b)human-machine interaction 
(c) human-human interaction 
(photo by author)
Rys. 2. Przykłady interakcji 
uwzględnianych w HAP: 
(a) interakcje człowiek-obiekt,  
(b) człowiek-maszyna, 
(c) człowiek-człowiek

Fig. 3. Stages of data processing in HAP methods
Rys. 3. Etapy przetwarzania danych (HAP)

The HAP process consists of 4 main stages which are: 
1) data acquisition and preprocessing, 2) model develop-
ment, 3) model evaluation, 4) prediction. Figure 3 illustrates 
these stages.

4.2. The Approaches Used in HAP/HAR
Many new approaches have been tested for HAP and HAR 
tasks. In this paper, we reviewed 4 of those approaches propo-
sed in recent research papers namely: Artificial Neural Networks 
(ANN), Support Vector Machines (SVM), probabilistic appro-
ach, and decision trees.

Artificial Neural Network(ANN): this approach attempts to 
emulate the human brain neurons to enable computers to 
learn and make decisions in a human-like way. HAP methods 
involving ANN with visual data require adequate human-pose 
representation for effective performance. The most popular 
representations of joint angles use Euler angles as in [80] and 
some use quaternions [81], whose values are fed to the learning 
algorithm after preprocessing. Applied to HAP, ANN learns 
typically by taking inputs, iteratively adjusting the weights 
based on the error, and supplying outputs until minimal loss is 
observed. Anticipation of activity at any given time is depen-
dent not only on the present state, but also on previous obse-
rvations, hence it is critical to consider the temporal aspect 
of activity progression [82]. The Recurrent Neural Network 
(RNN) is an effective model for capturing activity progression. 
The paper [83] demonstrated a RNN real-time surveillance sys-
tem to spot violent human activities in public environments 
using drones. It used hand-crafted features in order to acce-
lerate RNN learning so that it can use these features to learn 
more complex patterns right from the start of training. The 
problem with this method arises when long-term dependency 
is involved. To address the aforementioned limitation, RNN-
-based Long Short Term Memory (LSTM) was introduced 
[84]. LSTM consist of a memory cell that can delete and add 
information over time. In this way, the neural network is able 
to capture correlations between the previous observations as 
well as hidden points to provide long-term context.

Deep learning is largely applied in HAP. It uses multiple 
layers of ANN to progressively process the data in order to 
extract higher level features from combinations of lower level 
features. Deep learning is advantageous in the sense that it 
performs automatic feature extraction, which is particularly 
useful when dealing with challenging datasets. The paper [85], 
proposed a Deep Neural Network (DNN) consisting of a com-
bination of Convolutional Neural Networks (CNN), attention 
layers, LSTM, and softmax layers to improve the accuracy 
of predictions and for short-term predicting. The attention 
layer selectively concentrates on the important parts of the 
input sequence, while the softmax is the activation function 
that normalizes the outputs. The paper [86] compared their 
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LSTM-based neural network with the Naive Bayes method. In 
HAP, unlike the presented LSTM approach, the Naive Bayes 
classification method is based on conditional probabilities for 
prediction of human activities and does not learn the corre-
lations between the features. The LSTM approach reported 
a significantly higher prediction accuracy compared to Naive 
Bayes method. Deep learning is well known for the ability to 
auto-perform feature extraction hence this makes it suitable 
for HAPs using several types of input data such as images, 
skeleton data, time series signals, etc [87–90]. A commonly 
used type of neural network in HAP is the Convolutional 
Neural Network (CNN), due to its strong pattern detection 
ability especially when working with visual data. CNN con-
tains hidden convolutional layers that process data through 
convolution operations using filters. The filters extract features 
maps detecting patterns in the data [82]. In cases of processing 
volumetric data or a sequence of 2D frames, the filters move 
through 3 dimensions of the data i.e the length, width, and 
height [91]. These are referred to as 3D-CNN [92]. To improve 
performance, 3D-CNN and 2D-CNN integration (MiCT) was 
proposed in the paper [93]. The spatio-temporal information 
for HAP was fed to 3D-CNN and 2D-CNN in parallel. Feature 
maps generated by each module were added together to obtain 
deeper feature maps for higher efficiency.

Data representation for HAP sometimes is expressed as 
graphs due to the highly expressive nature of graph data 
structure [94]. Relationships between features are then easier 
to understand, which allows application of Graph Neural 
Networks (GNN). GNN is a deep learning model that opera-
tes on graph data structure. A graph consists of nodes that 
interconnect through edges. Graph Convolutional Network-
s(GCN) is a specific type of GNN that aggregate data from 
neighborhood nodes in a convolutional manner. GCN uses the 
idea of nodes embedding. Nodes embedding involves mapping 
nodes to a d-dimensional embedding space, lower than the 
graph dimension. The nodes are mapped in such a way that 
the network similarity and embedded space similarity are 
roughly equivalent. GNN in general, has achieved high per-
formance in HAP applications, what is advantageous is that 
it can perform the tasks that CNN failed to perform. Some 
ANN-based works include a real-time prediction of pedestrian 
behavior achieved in [95]. Here the mobile robots adjusted 
their trajectories both in time and space, and showed proac-
tive behavior like waiting, in order to provide priority passage 
for pedestrians. In [96] was presented a two-stage HAR, where 
the first CNN discriminated between two main classes “dyna-
mic” and “static”. The second CNN was used for recognition 
of activities within these main classes. A drawback of neural 
networks is their inability to express uncertainty. To address 
this issue, it was proposed in [97] the Bayesian neural network 
to provide estimates of prediction uncertainty. It consisted 
of the RNN that predicted the distribution of future states 
of the activity, and the Bayesian network that estimated the 
uncertainty associated with the predictions.

Support Vector Machine (SVM): the SVM approach is a clas-
sification method. One of the most widely used in HAP is 
structured SVM [98]. SVMs are supervised learning methods 
that work by introducing a hyperplane with a maximum 
margin that separates data into various classes. Maximizing 
the margin distance enables better classification accuracy. 
The paper [99] presented an SVM framework that learned 
model parameters from a structured hierarchical representa-
tion of human activities called moveme. The SVM algorithm 
was trained to focus on human movements before the action 
was completed by cutting out the tracks in which the person 
makes contact e.g hug, handshake. In this way, training is 
done using the tracks just before contact is made therefore 
the algorithm focuses solely on modeling people’s movements 

prior to action execution. The framework captured detailed 
characteristics of human activity that may imply a future 
action across frames, allowing activity prediction after obse-
rving any frame of the video, rather than using the first 
couple of frames as in many other works. In the paper [100], 
Haoran et al. suggested that performing HAP from videos 
didn’t necessarily require using full frames from the video 
sample. To demonstrate this, an SVMbased early activity pre-
diction approach was used to operate on the selected features 
from the keyframes of input videos. The features were com-
pared with the activities class keyframes. Each sample video 
went through a key frame selection process that involved 
obtaining action units by tracking specific human movement 
across video frames. The entropy of each frame in the training 
video was computed, and low entropy frames were chosen as 
class keyframes. The structured SVM based on keyframes was 
developed to predict the activity class from partial observa-
tion. Some action sequences can look similar. For example, 
punch and push movements have many similar action sequ-
ences e.g “reach”, “retract”. This makes it difficult to diffe-
rentiate between the action units. To address the issue Kong 
et al. [101] presented a structured SVM-based action predic-
tion method that incorporated composite kernels to capture 
nonlinear classification boundaries when classifying the acti-
vities. The kernels transformed the training data so that the 
previously nonlinear classification boundaries transform into 
linear boundaries with higher dimensions, to facilitate linear 
separation of the data for more efficient activity classification.

Probabilistic Method: probabilistic methods apply stati-
stical principles for data analysis. Although being one of 
the earliest forms of machine learning approaches, it is still 
widely used by modern researches [102]. Probabilistic appro-
aches aim at modeling the conditional probability of variables 
given data distribution. One of the most popular algorithms 
in this class is the “Naive Bayes Classifier” [103], which is 
based on Bayesian reasoning. It is called “Naive” because all 
features are assumed to contribute independently and equally 
to the outcome, i.e. no pair of features is dependent. Bay-
esian reasoning describes the probability that a future event 
will occur given prior knowledge of the probability of some 
other event that has occurred. The Markov’s model approach 
is another common probability-based HAP approach [104]. 
It assumes that at any given time in a randomly changing 
system, the next state is only dependent on the current state 
and is independent of anything in the past (1st order Markov 
model). An extension to the Markov model is the variable-
-length Markov model where the prediction of a future state 
depends on a fixed number of past states, with each state 
representing a sequence of values that may vary in length 
from one state to another [105]. Two mainly applied types of 
Markov’s models include the Markov Chain and the Hidden 
Markov Model (HMM). Markov chains represent all system 
states as well as transition rates, whereas HMM is used in 
systems where some states are hidden, i.e. not observed. Hid-
den Markov Model (HMM) works well with sequential data, 
which is common in human activity prediction. As a result, 
many HMM-based methods have been proposed. A HMM-
-based human-machine interaction system was proposed in 
the work [7], whereby the user performed complex activities 
comprised of multiple sub-events involving various objects. 
The machine analyzed previously performed sub-events to 
predict which sub-events the user would need to complete 
the task, and it provided feedback to assist the user in com-
pleting the task effectively. The HMM was used to represent 
the sub-events in chronological order. The user’s hand and 
the objects involved in the actions were tracked, and the rela-
tive distance between the hand and the objects were used to 
predict future actions.
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Activities belonging to the same classes considered during 
HAP are often regarded to occur with the same time sequence. 
While this is a fair assumption, in real-life applications this is 
not always the case. To remedy this [72] proposed an appro-
ach that handled activities with varying speed and duration 
using histogram of oriented velocity. Hence in this context, it 
is important to estimate the duration of the human activities 
as proposed by [106], in which a framework prediction takes 
into account duration of the current and future actions. The 
paper [6] proposed a real-time simulation for human activity 
identification and prediction, based on the probability of the 
human body intersections with the bounding colliders defined 
in the working space. Wearable sensors tracked body move-
ments during human activity. When the hand intersected with 
the bounding collider, the action was classified using the body 
joints, hand positions, and corresponding bounding box. The 

predictions were then made by calculating the probability of 
the hand intersecting with a bounding box. The paper [107] 
used Probability Suffix Tree (PST), which is a pattern-mat-
ching technique, to model the relationship between sub-actions 
in an activity. The proposed approach formulated a probabili-
stic function that used causality reasoning and predictability 
parameters to predict the activity class associated with an 
ongoing sub-action. Each PST branch from the root to the 
leaves represented an activity class, with the nodes represen-
ting the probability distribution after a sub-action is executed. 
A Predictive Accumulative Function (PAF) generated predic-
tability parameter which provided information on how early 
in the activity execution can predictions be made with satis-
factory accuracy. Based on this, activities were considered as 
either early predictable or late predictable. PST was also used 
in [8] to model the relationship between actions. Each action 

Table 1. Advantages and disadvantages of HAP methods
Tabela 1. Zalety i wady metod HAP

Method Advantages Disadvantages

ANN

−	 Have better fault tolerance.
−	 Network slows over learning time, and undergoes 

slower rate degradation.
−	 They have numerical strength, i.e they can perform 

more than one job at the same time.
−	 They can work with inadequate knowledge, i.e they 

may produce output even with inadequate info. It all 
depends on how important the missing information is.

−	 Use of hierarchical features simplifies the 
learning process.

−	 Deep learning simplicity removes the need for feature 
engineering which was a complex task.

−	 Versatile nature of model make them usable for 
additional data, which is great for online learning’

−	 They are reusable, e.g using an image classification 
for video processing, processing images for smart 
homes

−	 This network is a black box, i.e there is lack of 
transparency, hence difficult to trust.

−	 Require a lot of data for training.
−	 Poor at representing uncertainty.
−	 Easily fooled by adversarial examples.

SVM

−	 Very performant where there is a clear margin of 
separation between classes.

−	 More effective in high dimensional spaces.
−	 It is relatively memory efficient.

−	 Comparatively less suitable for large datasets.
−	 Do not perform very well where datasets have 

more noise.
−	 Classifies data on each side of an introduced 

margin boundary, no probabilistic explanation 
for classification.

Probabilistic

−	 Provide an idea about the uncertainty associated 
with the prediction.

−	 Ability to start off with relatively less data 
compared to data needed for other machine learning 
methods

−	 Offer much easier explainability how the output 
came about.

−	 Time-consuming and error-prone.
−	 Many probability methods assume predictions 

are independent, which hardly happens in real-
world cases.

−	 Higher complexity compared to other methods
−	 Probability outputs estimations can be wrong in 

some cases.

Decision 
trees

−	 Can very well perform both regression and 
classification which are both relevant in HAP.

−	 Can handle large datasets effectively,
−	 Level of accuracy of predictions is relatively high.
−	 Faster to train and resistant to overfitting.
−	 Can work with missing data by creating estimates 

for them.
−	 Outputs the importance of features, hence variables 

with positive impacts can be determined.

−	 Large number of trees slow down the algorithm, this 
can be ineffective for real-time predictions.

−	 Require much computational power due to 
numerous trees.

−	 Difficult to interpret and fails to determine the 
significance of each variable i.e it is predictive, 
not descriptive.

−	 In cases where the predictors and outcome have 
a non-linear relationship, accuracy will be affected.

−	 A small change in data may considerably change 
the algorithm performance
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contained information about the object, the hand position, and 
the type of interaction taking place. The proposed HAP fra-
mework took into account the relationships between subaction 
as well their temporal dependencies. First, the future action 
sequences were predicted using conditional probabilities, and 
the second part involved predicting the waiting time to exe-
cute a new action which was predicted using information of 
the starting time of each action, duration of each action and 
the sum of all intermediate action durations.

Decision Trees: decision trees are a type of non-parametric 
machine learning method that can be used for classification 
problems such as HAP [103]. It is a hierarchical system com-
prised of the root node, branches, internal nodes, and leaf 
nodes. The nodes represent the categorical features. Decision 
trees are applying simple decision rules based on which the tree 
branches are formed. Predictions are made using the majority 
voting rule, for multiple trees models. A decision tree-based 
approach to classifying human activities was proposed in the 
work [108]. The decision tree uses information gain to deter-
mine how relevant is a feature in determining the splitting 
criteria. Reduced Error Pruning (REP) was used to reduce 
misclassification and overfitting. REP is a bottom-up pruning 
approach to optimize the size of decision trees by removing 
non-relevant branches, which results in decreased complexity 
and increased accuracy.

Random Forest is a popular ensemble ML technique that 
combines several decision trees to improve the prediction 
accuracy [109]. Because HAP is a complex problem therefore 
learning algorithms should use a cost-effective classification 
learner [110]. This is offered in the Random Forest approach. 
The paper [111] proposed a Random Forest-based algorithm 
called Multi-class Balanced Random Forest (MBRF) that 
could predict multiple human activities simultaneously due 
to its ability to be scalable to multiple classes of activities. 
For each video frame, the approach used spatio-temporal 
features of defined points of interest adapted from the work 
[112]. To make the predictions, the similarity score was com-
puted based on the features description. The center point 
location of the frame and the spatio-temporal location of 
the interest points with respect to the center point of the 
frame were taken into account. The frames with the same 
center point location were considered to belong to the same 
video. The classical support vector machine (SVM) requires 
solving a large quadratic programming problem with a squ-
are objective function (QPP) and linear constraints. The 
objective function takes into account the distance between 
the hyperplanes that determine the classification result. In 
[113], a large objective function requiring a significant com-
putational time was divided into smaller quadratic problems 
according to the SMO concept. The method was combined 
with the Random-Forest algorithm. Minor quadratic pro-
gramming problems were iteratively solved until the solu-
tion convergence criterion was met, which means obtaining 
a global solution. This approach was used for initial classifi-
cation, and next the Random-Forest algorithm was applied. 
The Random Forest algorithm combines the output of mul-
tiple (randomly generated) decision trees to produce a clas-
sification score. A large number of partial decision trees 
are formed here. The winning classes are determined by 
the majority of votes. Unfortunately, the decision trees are 
sensitive to the data used for training. If the training data 
changes, the winning decision tree may be different, which 
means the classification result may also be different. So some 
change in a small amount of training data can dramatically 
change the forecast, even though on the scale of the full 
dataset such a change is marginal. One way to overcome 
this disadvantage is to use bootstrap aggregation (bagging), 
as discussed in [113]. In practice, bagging means using the 

average of some sets of independent data samples instead of 
using them independently. This reduces the dimensionality 
of the data and prevents overfitting of the classification, but 
on the other hand, it has a negative impact on the interpre-
tability of the results.

Overall, machine learning methods for HAP and HAR are 
quite similar. The difference in these methods is the fact 
that HAR methods focus on recognising already performed 
tasks, while HAP focus on future tasks. In HAP, building the 
model considers the context of past and present activities, 
this can make HAP models more complex. During training, 
the model learns patterns and relationships among various 
features, and also between features and outputs. Based on 
these, predictions about future activities are made.

4.3. Challenges in HAP/HAR Research
As it was already mentioned HAP and HAR require data 
gathering, development and application of data processing 
method and finally testing. Therefore, we can infer that the 
leading challenges encountered in the HAP and HAR are asso-
ciated with algorithms and datasets. Some of these challenges 
are listed below.

Inadequate amount of data: learning algorithms learn are 
using examples like a human being. But unlike the humans, 
large datasets are required for effective training, even for sim-
ple problems. In the paper [113] it was concluded that the 
significance of data surpasses the relevance of algorithms for 
complex problems. However, obtaining large datasets is dif-
ficult, expensive and time consuming. Nevertheless, today’s 
researchers still obtain relatively acceptable results using small 
and medium datasets.

Data quality: HAP methods are not only affected by the 
quantity of data, but also quality of data. The work [114] 
researched the influence of data quality on machine learning 
algorithms, and it proved that data quality affects outcomes 
in significant ways therefore more attention should be given to 
data collection (experiments). It is challenging to have clean 
datasets without noise, errors, missing data, etc. Data there-
fore must be preprocessed before training. This is rather chal-
lenging task as data preprocessing methods are not predefined 
and depend on the nature of the problem.

Problem of overfitting and underfitting: HAP methods 
which use artificial intelligence and especially neural networks 
have chances of falling into the trap of overfitting when fin-
ding underline patterns in the data, and they cannot also find 
real fitting due to noisy data. This often happens especially 
to complex cases. This challenge can be addressed by using 
simpler approaches to data processing. On the other hand, 
underfitting is also a problem which should be approached by 
features processing methods.

Unnecessary features: the system needs enough amount of 
relevant features to perform well. Very large datasets also make 
it difficult to find relationships between features [115]. This is 
where feature engineering comes to play. Therefore dimensio-
nality reduction algorithms like Principal Component Analysis 
(PCA) produce more useful but reduced sets of features [116].

Inter-subject variations and time variations: there might 
be a challenge when applying machine learning algorithms 
for predicting activities as different persons often vary in the 
way they perform activities. Moreover, human behaviour may 
also vary with time and place, i.e the same subject may per-
form the same activity in a slightly different manner when the 
environment is changed, or after a considerable period of time. 
These changes cause variations in datasets and hence make 
reasoning more challenging.

Close similarities among activities: activities that are very 
similar turn to have similar sensor readings. As a result, the 
accuracy of the predictions may be degraded in such cases.

38

Predicting Human Activity – State of the Art 

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A  NR 2/2023



5. Discussion

Recent advancements in machine learning methods for HAR 
and HAP have brought questions regarding which methods 
are more efficient, cost-effective, and time-saving. There is no 
direct answer to this question as every method is unique in 
its own way. Based on the various research works reviewed in 
this paper, it is clear that the performance of the HAP and 
HAR experiments vary due to the methodologies used, the 
dataset, and activity representations. Thus all of the tech-
niques discussed have advantages and disadvantages. In the 
paper [117] authors aimed at finding the best machine learning 
algorithm for human activity prediction considering Random 
Forest, ANN, SVM, Naive Bayes and decision trees. Accor-
ding to their results, the Random Forest approach offered the 
highest prediction accuracy. However one can argue that the 
accuracy can be affected by changing the values of parame-
ters, dataset sampling method, features selection and dimen-
sionality reduction method, which can lead to another method 
showing the best accuracy. Table 1 describes the advantages 
and disadvantages of the discussed methods. The goal of all 

of the preceding techniques is to predict the activities prior 
to completion, so they are sensitive to prior knowledge. Deep 
learning is one of the most recent trends in HAP. Deep learning 
typically outperforms other traditional ML techniques due to 
its ability, unlike other methods, to extract features from raw 
data. However, it has a high computational cost, which is cur-
rently a rather serious limitation.

It is worth noting that the aforementioned HAP approaches 
are based on low-level feature representations. Researchers 
have found that some type of high-level representations of 
human complex activities called “semantic features” can be 
used in HAP and HAR. Semantic features are attributes that 
describe distinctive characteristics of the activity at a higher 
level. Applying these attributes improves the accuracy of pre-
dictions, particularly for activities belonging to the same class, 
but consisting of visually different actions caused by its exe-
cution variations [119]. While low-level features are useful for 
HAPs, prediction algorithms cannot anticipate “untrained” 
actions i.e the algorithms cannot predict an activity not seen 
before. To address this issue, Cheng et al. [120] proposed to 
manually design semantic features that represent human acti-

Table 2. Recent results in HAP accuracy predictions
Tabela 2. Zalety i wady metod HAP

Article Method Dataset Prediction  
accuracy (%)

ANN-based methods

Sai Praneeth et al. [125] Graph and Hierarchical Temporal Networks CAD-120 88.9

Sadegh [126] Multi-stage LSTM UCF-101

UT-Interaction

80.5 
84.0

Fiora Pirri et al. [127] 3D-CNN + ProtoNet + RNN MPII Cooking 92.8

Md. ZiaUddin [128] RNN MHEALTH

Dataset

99.69

Shi et al. [129] Feature Mapping RNN + RBF + GAN JHMDB-21 73.4

Neziha Jaouedi et al. [130] RNN + CNN CAD-60 95.5

Yaxiang Fan et al. [131] Deep ConvNets Hockey fight 96.9

SVM-based methods

Yu Kong et al. [132] Structured Support Vector Machine (SSVM) UT1 1 86.67

M. Hoai et al. [98] SVM Weizmann 82

Ahmad Jalal et al. [133] SVM WISDM 82.77

Probabilistic methods

J. Bütepage, et al. [134] Probabilistic semi-supervised variational 
recurrent neural network (SVRNN)

UTKinect-Action3D 84.0

Siyuan Qi et al. [135] Spatial-Temporal And-Or Graph (ST-AOG) 
– Probabilistic

CAD-120 86.7

Y Jin, et al. [136] Markov Logic Network (MLN) CAD-120 0.83

Victoria Manousaki et al. [137] Probabilistic graphical model CAD-120 55.9

Sheng Li et al. [138] Dynamic Marked Point Process (DMP) + 
Diction of Partial Match (PPM)

MSR 3D Action Pair 69

Kang Li et al. [104] Probabilistic Suffix tree (PST) MPII-Cooking 79

Decision tree-based methods

Gang Yu et al. [111] Random Forest UT-Interaction 90

Sheikh Badar et al. [113] Random Forest IMSB 81.25

Katherine Ellis [139] Random Forest Accelerometer data 92.3

Veralia Gabriela et al. [140] Decision tree Activities of Daily Living (ADLs) 88.02
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vities on a higher concept. During training, each activity is 
characterized by the absence or presence of semantic attri-
butes, and a classification algorithm is used to recognize the 
labeled characteristics corresponding to each activity. However, 
establishing the semantic attributes manually would be ardu-
ous, expensive, and time-consuming. To solve this problem, 
[121] suggested an approach based on deep learning techni-
ques known as restricted Boltzmann machines (RBMs) and 
Deep Belief Networks (DBNs) to assign semantic attributes. 
Semantic attributes obtained by this technique showed high 
relevance when compared to manually assigned ones. Other 
methods used for capturing semantic features, include Beta-
-Bernoulli Process Restricted Boltzmann Machines [122], Dif-
fusion Maps embedding [123], Markov Semantic Model [124], 
etc. For the view of the contents of this paper, figure 4 gives 
the systematic view of HAR and HAP issues.

HAP and HAR are active research and development fields 
which have a vast area of potential directions in the future. 
To mention a few; it could be focused on improving the 
accuracy and reliability of already existing methods of HAP 
and HAR be it by developing new algorithms, using bet-
ter features extraction techniques, etc. Further, it could be 
focused for improved integration with other technologies e.g 
integrating sensors, cameras and other devices for higher 
performance and comprehensive activity tracking. Another 
potential future focus of HAP and HAR research could be on 
increasing real-world applications such as healthcare, sports, 
transport. With the increase in accuracy and reliability of the 
HAP and HAR technologies, it is likely to be used in various 
real-world applications.

6. Conclusion

While human activity recognition yields many promising 
results and is much more explored by researchers, human 
activity prediction is a growing area with promising poten-

tial. We reviewed 4 common types of activity prediction 
methods namely; ANN, SVM, probabilistic method, and 
decision trees. We shortly described sensor devices and 
datasets as well. This gives a general picture of the state of 
the art. It is observed that researchers have tried various 
techniques or approaches for better prediction of human 
activities using various sources of data like RGB images, 
depth images, RFID signals, Wi-Fi signals and data deli-
vered by wearable sensors such as accelerations, velocities 
and orientation angles. Wi-Fi and RFID sensors have com-
paratively fewer applications due to their high flexibility 
to interferences. The wearable sensors on the other hand 
fail to sense the state of motionless objects. Hence the 
more common sensing technique use visual sensors, mostly 
RGB data. The recent advances and new ideas were sum-
marized. Analyzing the state of the art methods of HAP 
enables a better understanding of steps involved in them, 
hence increasing the possibility of identifying efficient tech-
niques to achieve needed performance. Table 2 gives the list 
of the most representative methods with their prediction 
accuracy. According to this table, ANN-based prediction 
can be concluded as the most popular and outperforming 
the other techniques.
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Streszczenie: Przewidywanie działań człowieka to bardzo aktualny kierunek badań. 
Wykorzystywane są tu powszechnie metody sztucznej inteligencji. Umożliwiają one wczesne 
rozpoznawanie i klasyfikowanie działań człowieka. Taka wiedza jest niezwykle potrzebna w pracach 
nad robotami i innymi interaktywnymi systemami komunikującymi się i współpracującymi z ludźmi. 
Zapewnia to wczesne reakcje takich urządzeń i odpowiednie planowanie ich przyszłych działań. 
Jednak ze względu na złożoność działań człowieka ich przewidywanie jest trudnym zadaniem. 
W tym artykule dokonujemy przeglądu najnowocześniejszych metod i podsumowujemy ostatnie 
postępy w zakresie przewidywania aktywności człowieka. Skupiamy się szczególnie na czterech 
podejściach wykorzystujących metody uczenia maszynowego, a mianowicie na metodach 
wykorzystujących: sztuczne sieci neuronowe, metody wektorów nośnych, modele probabilistyczne 
oraz drzewa decyzyjne. Omawiamy zalety i wady tych podejść, a także aktualne wyzwania związane 
z zagadnieniami przewidywania aktywności człowieka. Ponadto opisujemy rodzaje czujników 
i zbiory danych powszechnie stosowane w badaniach dotyczących przewidywania i rozpoznawania 
działań człowieka. Analizujemy jakość stosowanych metod w oparciu o dokładność przewidywania 
raportowaną w artykułach naukowych. Opisujemy znaczenie rodzaju danych oraz parametrów 
modeli uczenia maszynowego. Na koniec podsumowujemy najnowsze trendy badawcze. Artykuł ma 
za zadanie pomóc przy wyborze właściwej metody przewidywania aktywności człowieka, wraz ze 
wskazaniem narzędzi i zasobów niezbędnych do efektywnego osiągnięcia tego celu.

Słowa kluczowe: przewidywanie działań, przewidywanie akcji człowieka, interakcje człowiek-robot 
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