Automation of the process of microwave hydrothermal synthesis of nanopowders

eng Article in English DOI:

Andrzej Majcher Institute for Sustainable Technologies – National Research Institute, Radom, Poland

Download Article


The article presents the process of microwave hydrothermal synthesis of nanopowders automation. The essential elements of automation are: a novel reactor and its control system. The reactor has a unique design of process chamber, which used in conjunction with a batch control system allows highly efficient production of nanopowders to be obtained. The design of the reactor together with new principles of operation, structural materials, and distribution of electromagnetic field are described. The paper also presents a control system for the reactor, which allows for automatic operation in the stop-flow mode, control of process pressure, continuous monitoring of process parameters and safe operation of the device.


automation of chemical processes, batch control, microwave hydrothermal synthesis, nanopowder, stop-flow mode

Automatyzacja procesu mikrofalowej hydrotermalnej syntezy nanoproszków


W artykule przedstawiono automatyzację procesu mikrofalowej hydrotermalnej syntezy nanoproszków. Jej zasadniczymi elementami są: nowy typ reaktora oraz jego system sterowania. Reaktor posiada unikatową konstrukcję komory procesowej, co w połączeniu z zastosowanym systemem sterowania wsadowego pozwala na uzyskiwanie dużej wydajności produkcji nanoproszków. Opisano konstrukcję reaktora z uwzględnieniem nowej zasady działania, materiałów konstrukcyjnych, rozkładu pola elektromagnetycznego. Przedstawiono system sterowania urządzeniem, który zapewnia automatyczną realizacje procesów w trybie stop-flow, regulacje ciśnienia procesu, ciągłe monitorowanie parametrów procesów oraz zachowanie bezpieczeństwa obsługi urządzenia.

Słowa kluczowe

automatyzacja procesów chemicznych, mikrofalowa synteza hydrotermalna, nanoproszki, sterowanie wsadowe, stop-flow mode


  1. Shigeyuki S., Rustum R., Hydrothermal synthesis of fine oxide powders, “Bull. Mater. Sci.”, Vol. 23, No. 6, 2000, 453-460.
  2. Shigeyuki S., Rustum R., Sridhar K., Hydrothermal Synthesis of Ceramic Oxide Powders, [in:] Lee B., Chemical Processing of Ceramics, Second Edition, Taylor & Francis Group, 2005, 4-20.
  3. Masashi I., Solvothermal Synthesis, [in:] Lee B., Chemical Processing of Ceramics, Second Edition, Taylor & Francis Group, 2005, 22-63.
  4. Kappe C.O., Dallinger D., Controlled microwave heating in modern organic synthesis: highlights from the 2004-2008 literature, “Mol. Divers.”, 13/2009, 71-193.
  5. Polshettiwar V., Nadagouda M.N., Varma R.S., Microwave-Assisted Chemistry: a Rapid and Sustainable Route to Synthesis of Organics and Nanomaterials, “Australian Journal of Chemistry”, 62(1)/2009, 16-26.
  6. Hayes B.L., Microwave Synthesis: Chemistry at the Speed of Light, CEM Publishing: Matthews, NC, 2002.
  7. Barnhardt E.K., Microwave ring expansion reactions performed at sub-ambient temperatures, ACS National Meeting, 2004.
  8. Lonelli C., Łojkowski W., Main development directions in the application of microwave irradiation to the synthesis of nanopowders, “Chem. Today”, 25/2007, 34, 36-38.
  9. Lidstrom P., Tierney J., Wathey B., Westman J., Microwave assisted organic synthesis - a review, “Tetrahedron”, 51(2001), 9225-9283.
  10. Dallinger D., Kappe O., Microwave-Assisted Synthesis in Water as Solvent, “Chem. Rev.”, 107/2007, 2563-2591.
  11. Strauss R.C., On scale up of organic reactions in closed vessel microwave systems, “Organic Process Research & Development”, 13/2009, 915-923.
  12. Lehman H., LaVecchia L., Evaluation of microwave reactors for prep-scale synthesis in a kilolab, “JALA”, 10/2005, 412-417.
  13. Bowman M.D., Holcomb J.L., Kormos C.M., Leadbeather N.E., Williams V.A., Approaches for scaleup of microwave-promoted reactions, “Organic Process Research & Development”, 12/2008, 41-57.
  14. Moseley J.D., Leden P., Lockwood M., Rudna K., Sherlock J-P., Thomson A.D., Gilday J.P., A comparison of commercial microwave reactors for scaleup within process chemistry, “Organic Process Research & Development”, 12/2008, 30-40.
  15. Narendra G.P. et al, Effect of load size on the efficiency of microwave heating under stop flow and continuous flow conditions, “Journal of Microwave Power and Electromagnetic Energy”, 46(2)/2012, 83-92.
  16. Wiesbrock F., Hoogenboom R., Schubert U.S., Microwave-Assisted Polymer Synthesis: State-of-the-Art and Future Perspectives, “Macromol. Rapid Commun.”, 25/2004, 1739-1764.
  17. Kennedy A., Reznik A., Tadesse S., Nunes J., Time dependence of component temperatures in microwave heated immiscible liquid mixture, “Journal of Microwave Power and Electromagnetic Energy”, 43(2)/2009, 52-62.
  18. Wagner W., Pruss A., The IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, “J. Phys. Chem. Ref. Data”, Vol. 31, No. 2, 2002.
  19. Łojkowski W., Chudoba T., Smoleń D., Opalińska A., Majcher A., Microwave Solvothermal Synthesis of Doped Nanoparticles, International Symposium on Advances in Nanomaterials (ANM2010), 2010, India.
  20. Wojnarowicz J., Opalińska A., Smoleń D., Kuśnieruk S., Chudoba T., Łojkowski W., Solvothermal synthesis of doped zinc oxide nanopowder for NanFATE, “Nano-Biotechnologia PL”, Warszawa 2012.