Foot design for a hexapod walking robot

eng Article in English DOI:

send Krzysztof Walas Institute of Control and Information Engineering, Poznan University of Technology

Download Article


This article describes the process of development of the robotic foot for the six-legged walking robot Messor. In order to allow the robot to negotiate uneven surfaces and to walk on a compliant ground, the foot includes the sensing device which provides information on contact forces between the foot and the ground. At first, the foot with single-axis force measurement unit is described. Next, design of the triaxial sensing device is shown. Knowledge gathered during development of the single-axis device was transferred to build a new foot with extended capabilities. In the article description of the manufactured real devices is given.


design, foot, hexapod, walking robot

Projekt stopy sześcionożnego robota kroczącego


Niniejszy artykuł opisuje proces rozwoju stopy dla sześcionożnego robota kroczącego Messor. Stopa ma wbudowane urządzenie do pomiaru sił kontaktu między stopą a podłożem. Dane te są wymagane do kroczenia po nierównym i podatnym gruncie. W artykule pokazane zostało jednoosiowe urządzenie pomiarowe. Następnie opisano czujnik trójosiowy bazujący na projekcie czujnika jednoosiowego. Artykuł prezentuje proces projektowania i opis rzeczywistego urządzenia.

Słowa kluczowe

projektowanie, robot kroczący, robot sześcionożny, stopa


  1. Kim G.-S., Shin H.-J., Yoon J., Development of 6-axis Force/Moment Sensor for Humanoid Robot’s Foot, [in:] IEEE Sensors, October, 2007, 217-220.
  2. Kim G.-S., Development of 6-axis force/moment sensor for a humanoid robot’s foot, ”Science, Measurement Technology, IET”, Vol. 2, No. 3, 2008, 122-133.
  3. Kim G.-S., Yoon J., Development of intelligent foot with six-axis force/moment sensors for humanoid robot, [in:] IEEE International Conference on Robotics and Biomimetics (ROBIO), February, 2009, 939-944.
  4. Secord T., Asada H., A Humanoid Foot with Polypyrrole Conducting Polymer Artificial Muscles for Energy Dissipation and Storage, [in:] IEEE International Conference on Robotics and Automation (ICRA), April, 2007, 2904-2909.
  5. Davis S., Caldwell D., The design of an anthropomorphic dexterous humanoid foot, [in:] IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October, 2010, 2200-2205.
  6. Hong Y., Yi S., Ryu S., Lee C., Design and experimental test of a new robot foot for a quadrupedal jointed-leg type walking robot, [in:] 5th IEEE International Workshop on Robot and Human Communication, November, 1996, 317-322.
  7. Hoepflinger M., Remy C., Hutter M., Spinello L., Siegwart R., Haptic terrain classification for legged robots, [in:] IEEE International Conference on Robotics and Automation (ICRA), May, 2010, 2828-2833.
  8. Chuah M. Y. M., Estrada M., Kim S., Composite Force Sensing Foot Utilizing Volumetric Displacement of a Hyperelastic Polymer, [in:] IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October, 2012, 1963-1969.
  9. Park H. S., Sitti M., Compliant footpad design analysis for a bio-inspired quadruped amphibious robot, [in:] IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October, 2009, 645-651.
  10. FSR Force Sensing Resistor Integration Guide and Evaluation Parts Catalog, Interlink Electronics.
  11. Evan D., Design of Plantar Force Sensor for Ankle Rehabilitation Monitor, EE 4BI6 Electrical Engineering Biomedical Capstones. Paper 42, 2010.
  12. Moon S.-C., Lee C.-H., Lee S.-G., A study of knee brace locking timing and walking pattern detected from an FSR and knee joint angle, [in:] 11th International Conference on Control, Automation and Systems (ICCAS), October, 2011.
  13. Rana N., Application of Force Sensing Resistor (FSR) in Design of Pressure Scanning System for Plantar Pressure Measurement, [in:] Second International Conference on Computer and Electrical Engineering, December, 2009, 678-685.
  14. Ogris G., Kreil M., Lukowicz P., Using FSR based muscule activity monitoring to recognize manipulative arm gestures, [in:] 11th IEEE International Symposium on Wearable Computers, October, 2007, 45-48.
  15. Desai A., Payandeh S., Vaisey J., On the localization of objects using an FSR pressure pad transducer, [in:] IEEE International Conference on Systems, Man, and Cybernetics, 1994, Humans, Information and Technology, October, 1994, 953-957.
  16. Stewart C., Rohs M., Kratz S., Essl G., Characteristics of pressure-based input for mobile devices, [in:] Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, New York, NY, USA, April, 2010, 801-810.
  17. Bosi M., Jord`a S., Towards fast multi-point force and hit detection in tabletops using mechanically intercoupled Force Sensing Resistors, [in:] NIME’12, Ann Arbor, Michigan, USA, May, 2012.
  18. Zehr E., Stein R., Komiyama T., Kenwell Z., Linearization of force sensing resistors (FSR’s) for force measurement during gait, [in:] Engineering in Medicine and Biology Society, 1995, IEEE 17th Annual Conference, September, 1995, 1571-1572.
  19. Florez J., Velasquez A., Calibration of force sensing resistors (FSR) for static and dynamic applications, [in:] ANDESCON, 2010 IEEE, September, 2010, 1-6.
  20. Lebosse C., Renaud P., Bayle B., de Mathelin M., Modeling and Evaluation of Low-Cost Force Sensors, ”IEEE Transactions on Robotics”, Vol. 27, No. 4, 2011, 815-822.
  21. Krkljes D., Nagy L., Babkovic K., Force-dependent contact area excitation of FSR force sensor utilizing dome-shaped rubber element, [in:] 28th International Conference on Microelectronics (MIEL), May, 2012, 181-184.
  22. Walas K., Belter D., Messor - Versatile Walking Robot for Search and Rescue Missions, ”Journal of Automation, Mobile Robotics & Intelligent Systems”, Vol. 5, No. 2, 2011, 28-34.
  23. Walas K., Belter D., Supporting locomotive functions of a six-legged walking robot, ”Int. J. Appl. Math. Comput. Sci.”, Vol. 21, No. 2, 2011, 363-377.