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Abstract: The problem of control and dynamical modeling of 
a unicycle-cyclist system treated as a double inverted pendulum 
with rolling friction and vibrating in the plane that is perpendicular 
to the direction of movement is studied. The object of analysis 
consists of two basic parts: the wheel and the double pendulum. 
The equations of motion have been derived using the Lagrange 
equation of the second kind. The kinematic excitation has been 
applied to the cyclist. The aim of control is to maintain the unicy-
clecyclist system in an unstable equilibrium around given angular 
position. Control moment of force has been applied to the wheel 
in a numerical procedure performed in Simulink. Kalman filtering 
problem has been solved basing on the feedback control system 
and functions included in Control System Toolbox of MATLAB. 
The proposed approach could be extended in future to solve 
some dynamical problem of transverse vibrations.

Keywords: double inverted pendulum, linearization, dynamic 
modeling, rolling friction, Kalman filter, LQG control

Nomenclature

a  – amplitude of cyclist’s inclination,
ci – coefficient of damping,
ei  – distance between the center of gravity and the axis 

of rotation of the i-th link,
E  – kinetic energy,
f  – resistance of rolling friction,
g  – gravitational constant,
Ii – moment of inertia of the i-th link,
li  – length of the i-th link,
mi  – mass of the i-th link,
Mi  – moment of friction in the i-th bearing,
MN  – driving moment,
Nc  – normal load,
Qi  – i-th generalized force,
r  – wheel radius,
vm  – experimentally estimated mean linear velocity of 

the unicycle-cyclist system,
V  – potential energy,
tm – experimentally estimated mean time of ride,
t1  – time of simulation,
ji  – angle of rotation of the i-th link,
w – frequency of cyclist’ inclinations,
ri  – radius of inertia of the i-th link,
y  – kinematic excitation.

1. Introduction

This work is devoted to a problem of modeling and control 
of a dynamical system consisting of a single wheel vehicle 
(a single-track unicycle) and a cyclist’s body. The unicycle 
is a specific kind of bicycle, because it consists only from 
one wheel and a seat on which a driver operates to keep 
balance and to drive forward or backward. The unicycle is 
a child of an original bicycle having the driving big wheel 
and a small wheel that was only the rolling one helping 
the driver in keeping the vehicle’s direction of movement.

Basic feature of the monocycle’s construction is that 
it looks like a bicycle wheel with a hub designed so the 
axle is the fixed part of the hub. Therefore, the rotation 
of the cranks directly controls the rotation of the wheel 
(it is called direct drive). The cranks are attached to the 
ends of the axle, so pedals always rotate during riding 
the unicycle. The direct connection between the axle and 
the crack is not a rule and ratio between their rotations 
may exist.

Fig. 1. Physical model of a simplified unicycle-cyclist system with 
rolling friction

Rys. 1. Model fizyczny uproszczonego układu monocykl-rowe-
rzysta z tarciem tocznym
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Riding the unicycle is not easy. It is caused by single 
tracking of the vehicle that requires to keep balance of 
the system simultaneously in two planes. Moreover, to 
ride comfortably the distance between the saddle and the 
lowest pedal position has to be smaller than length of the 
cyclist’s leg. In a consequence, center of gravity of the 
cyclist’s body lies a bit upper than his normal upright 
position.

To keep balance in plane that is parallel to the 
direction of riding (forward or backward) the cyclist 
has to accelerate or slow the driving wheel to maintain 
his center of gravity perpendicularly above the axle of 
rotation of the wheel. To keep balance in plane that is 
transversal to the direction of riding the cyclist has to 
balance from left to right side with the use of his loins.

Construction and mechanics of a unicycle allows to 
consider it as an inverted double pendulum (see fig. 1). 
The first link is created by the cyclist’s body, and the 
second link by the fork frame stiffly joined with the seat 
post (a link between the frame and saddle). Considering, 
that the wheel states the third link, so a kind of triple 
pendulum could be even assumed.

The system visible in fig. 1 has three degrees of 
freedom and to control it one would involve a control 
moment of force applied to the driving wheel or in the 
joint created by the rotational connection between the 
second and third link. 

of freedom realizations of inverted pendulum systems. 
Balancing of inverted pendulums of any kinds is a classic 
control problem of some 30 years. 

A new fuzzy controller for stabilizing series-type double 
inverted pendulum systems is proposed in [12] based on 
the SIRMs (Single Input Rule Modules) dynamically 
connected fuzzy inference model. The proposed controller 
deals with six input items. Each input item is provided 
with a SIRM and a dynamic importance degree (DID). 
The SIRM and the DID are set up such that the angular 
control of the upper pendulum takes the highest priority 
order over the angular control of the lower pendulum and 
the position control of the cart when the relative angle 
of the upper pendulum is big. By using the SIRMs and 
the DIDs, the control priority orders are automatically 
adjusted according to control situations. Simulation 
results show that the controller stabilizes series-type 
double inverted pendulum systems of different parameter 
values in about 10 seconds for a wide range of the initial 
angles.

In [6] an adaptive fuzzy logic control of dynamic 
balance and motion is investigated for wheeled inverted 
pendulums with parametric and functional uncertainties. 
The proposed adaptive fuzzy logic control based on 
physical properties of wheeled inverted pendulums 
makes use of a fuzzy logic engine and a systematic online 
adaptation mechanism to approximate the unknown 
dynamics. Based on Lyapunov synthesis, the fuzzy control 
ensures that the system outputs track the given bounded 
reference signals to within a small neighborhood of zero, 
and guarantees semi-global uniform boundedness of all 
closed-loop signals. The effectiveness of the proposed 
control is verified through extensive simulations.

Contribution [9] deals with the application of energy 
based control methods for a model of inverted pendulum 
on a cart. A swing-up controller as well as a nonlinear 
balancing controller with the focus on the implementation 
on a laboratory model is presented. The well-known 
control concepts has been adapted such that they work 
on a concrete experiment with all the undesirable effects 
like friction and quantization.

In [7] a linear state feedback design technique for 
balancing an inverted pendulum is provided. The pivot of 
the investigated pendulum is mounted on a carriage that 
has limited horizontal travel. For any given (arbitrarily 
small) allowable travel of the carriage, a linear state 
feedback controller that balances the pendulum with 
an infinite amount of gain margin has been adopted 
in the sense that, if the feedback gain is perturbed by 
any multiplying factor greater than one, the controller 
balances the pendulum without requiring greater traveling 
distance than the maximum allowable.

A mathematical model of a planar double inverted 
pendulum was established in [13] by means of analytical 
dynamics method. Based on the linear quadratic optimal 
theory, a LQR self-adjusting controller was derived. 
Further the output of LQR controller was refined through 
optimize factor which was the function of the states of 
planar pendulum, and on account of that, control action 
exerted on the pendulum was improved. Simulation 
results together with pilot scale experiment verify the 
efficacy of the suggested scheme.

Fig. 2. Follow-up control system
Rys. 2. Schemat kontroli nadążnej

If a human loses his balance while riding the unicycle 
his membranous labyrinth senses it and an error of 
regulation of the unstable equilibrium appears. Brain 
functions here as regulator that receives the error and 
accordingly to its learned neural network produces 
appropriate control signals that through the nervous 
system cause desired action of muscles (actuators). 
Muscles action enables the human to correct his body’s 
position. Following this description a cyclist driving a 
unicycle could be approximately analyzed as a follow-up 
control system visible in fig. 2.

2. Modelling of the unicycle-cyclist 
system

The above analysis of various pendulums’ behavior 
usually attains stabilization, so later attempts have 
produced many problems regarding the field of control 
and optimization of linear and nonlinear discontinuous 
(with impact and friction) and continuous multi degrees 
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Work [10] uses the symbolic manipulation 
toolbox available in MATLAB to investigate pole-
zero cancellation of the uncontrollable double inverted 
pendulum algebraically, following exploratory numerical 
computation. The ability of the software to factorize 
complicated multivariable polynomials is exploited to 
identify, in algebraic form, the anticipated pole-zero 
term cancelling throughout the transfer functions of 
the uncontrollable pendulum system. The investigated 
system has been considered with respect to the force on 
the trolley, for which it is a conditionally uncontrollable 
problem, and with respect to each of the torques on the 
arms, which are unconditionally uncontrollable problems.

A methodology of Lyapunov stability control is 
presented in [11] to achieve the upright balance of a base-
excited inverted pendulum with two degrees of rotational 
freedom. The inclusion of the base point movement led 
to the dynamic system of such a pendulum which is 
non-autonomous and is under persistent disturbance. 
An idealized piecewise continuous control strategy was 
designed, and for the obtained controller the solution 
trajectories to be arbitrarily close to the upright 
position have been guaranteed. The continuous control 
law guarantees that the solution trajectories are kept 
in a controlled region around the upright position. The 
stability has been traded off with a weaker stability to 
prevent chattering. The robustness of the controllers with 
respect to certain class of uncertainties was also examined.

A passive fault tolerant control scheme has been 
suggested in [8]. A nominal controller is augmented 
with an additional block, which guarantees stability and 
performance after the occurrence of a fault. The method 
is based on parameterization, which requires the nominal 
controller to be implemented in observer based form. 
The proposed method is applied to a double inverted 
pendulum system, for which the H∞ controller has been 
designed and verified in a lab setup.

The literature overview shows that the problem is 
still valid, states a good field for practicing in control of 
multi degrees of freedom systems, as well as opens new 
perspectives for application of interesting structures of 
controllers.

One of such simple structures that are based on the 
standard LQG control has been studied in this work. 
Application of the Kalman filtering problem to solve such 
kinds of continuous systems is, in general, not examined 
in literature. An exemplary contribution [5] that uses 
a Kalman filter to help the estimation of a gyro angle 
presents some study devoted to balancing and navigation 
of a MIPS robot. It is a mobile inverted pendulum system 
whose structure is a combination of a wheeled mobile 
robot and an inverted pendulum system. Low cost gyro 
and tilt sensors are used and fused to detect balancing 
angle. Digital filters are selectively designed for sensors 
to measure an inclined angle accurately with respect 
to different frequencies. Performances of balancing and 
navigation of the MIPS are tested by experimental studies 
through remote control.

Let us take into analysis a simplified model of 
unicycle-cyclist system in fig. 1. Assuming that the most 
upper link is the cyclist’s body and the remaining two are 

the unicycle’s links, it creates a physical model placed in 
Cartesian coordinates.

Physical model of the unicycle-cyclist system consists 
of three solid bodies of which masses are focused in points 
of their centers of gravity: 1) the driving wheel, 2) fork 
frame with the seat post, 3) cyclist’s body. Equations of 
motion have been derived by means of Lagrange equation 
of second kind [1]

 
, 1, 2, ..., ,n

n n n

d E E V Q n N
dt q q q

 ∂ ∂ ∂
- + = = ∂ ∂ ∂ �

 (1)

where: N is the number of generalized coordinates, qn is 
the n-th coordinate.

In the analysis we will assume that j1, j2, j3 are the ge-
neralized coordinates, but if to regard, that a cyclist riding 
the unicycle can incline forward and backward with a fre-
quency w in the direction of movement

 
( ) ( ) ( )3 2 , sint t a tϕ ϕ ψ ψ ω= - = , (2)

where: y(t) – angle of cyclist’s body around the saddle.

Having the above one rewrites eq. (1) as follows

 
, 1, 2.n

n n n

d E E V Q n
dt ϕ ϕ ϕ

 ∂ ∂ ∂
- + = = ∂ ∂ ∂ �

 (3)

Moments of inertia Ii of i-th link with respect to axes 
perpendicular to centre of gravity of i-th mass are given 
by the formula

 
2, 1, , 3i i iI m iρ= = … , (4)

where corresponding radii of inertia are as follows

 
2 3

1 2 3
3 3, , .

3 3
e erρ ρ ρ= = =  (5)

Distances between centers of gravity and the correspon-
ding axes of rotation ei are as follows

 0.5 , 2, 3.i ie l i= =  (6)

Kinetic energy E of the unicycle-cyclist system is a sum 
of kinetic energies of the linear and angular displacement 
of each mass

 
( )

3
2 2 2 2

1 2
i

i i i i
i

mE x y ρ ϕ
=

 = + + ∑ �� � . (7)

Gravitational forces are conservative, so potential ener-
gy with respect to each mass of the system reads

 1 1 2 2 3 3V m gy m gy m gy= + + . (8)

Assuming that the direct driving wheel is stiff and rolls 
without slips the integrable geometrical and kinematic con-
straints are superposed
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 1 1 1, .x r y rϕ= =  (9)

In accordance to the above assumptions the following 
relations between Cartesian and generalized coordinates 
are found

( )( )
( )( )

2 1 2 2

2 1 2 2

3 1 3 2 2 2

3 1 3 2 2 2

sin ,
cos ,
sin sin sin ,

cos sin cos .

x x e
y y e
x x e a t l

y y e a t l

ϕ
ϕ
ϕ ω ϕ

ϕ ω ϕ

= +
= +

= + - +

= + - +

  
(10)

For estimation of generalized forces we need to assume 
some non-conservative forces: normal force Nc and any re-
sistances in joints. Generalized coordinates describe abso-
lute angular displacements, therefore moments of forces ac-
ting on appropriate links are taken as the generalized forces

 1 01 21 2 12,NQ M M M Q M= - + = . (11)

Dynamics of the system will be investigated while riding 
with constant velocity. At this condition moments acting 
on the wheel with respect to z1 axis have to balance them-
selves. If links 2 and 3 move forward with constant veloci-
ty keeping their upright positions in directions x2 and x3, 
respectively, then the driving moment MN is equal to the 
moment of rolling resistance

 1 2 3( )NM m m m fg= + + . (12)

Additionally, moment of rolling resistance is given by

 01 sgn i cM f Nϕ= � , (13)

where normal force Nc reads

 
3 3

1 1
c i i i

i i
N g m m y

= =

 
= +  ∑ ∑ �� . (14)

Moment generated by the viscous damping of frame

 ( )12 2 2 1 21M c Mϕ ϕ= - - = -� � . (15)

Generalized forces are finally found in the form

 
 

(16)

By substitution of eqs. (7), (8) and (15) in (1) we found 
in Mathematica the two ordinary differential equations of 
second order describing the reduced dynamical model of 
the unicycle-cyclist system
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(17b)

3. Numerical Solution of dynamics 

Numerical solution of the unicycle-cyclist sys-
tem has been preceded by experimental estima-
tion of some parameters. It was found that at 
a normal use of the unicycle that rides on a concre-
te road the mean linear velocity of driving vm » 3 m/s,
and the corresponding mean angular velocity of the wheel 
dj1/dt » 10 rad/s. Other parameters of an exemplary uni-
cycle read: m1 = 5 kg, m2 = 30 kg, r = 0.3 m, l2 = 1 m, 
l3 = 0.8 m, e2 = 0.5 m, e3 = 0.4 m, c2 = 0.01 Nm/s, 
a = 0.25 m, w = 4.7 rad/s, f = 0.02 m, t1 = 10 s.

Fig. 3. A stroboscopic view on motion of the unicycle-cyclist 
system

Rys. 3. Stroboskopowy widok ruchu układu monocykl-rowerzysta
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Fig. 5. Time histories of dependencies between state variables 
xi  and yi for i = 1, ..., 3

Rys. 5. Wykresy czasowe zależności między zmiennymi stanu xi 
i yi przy i = 1, ..., 3

Fig. 4. Time histories of state variables φi for i = 1, ..., 3
Rys. 4. Wykresy czasowe zmiennych stanu φi przy i = 1, ..., 3
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Figure 3 presents 15 subsequent views of numerical 
solution of differential equations (17) without any 
control torque input at initial conditions: dj1/dt(0) = 
10 rad/s, j1(0) = j2(0) = j3(0) = 0.

Comparison of results could be done on the basis of 
state variables' time histories shown in figs. 5 and 6 of 
the analyzed not controlled inverted double pendulum.

Fig. 6. Input-output Simulink model of the unicycle-cyclist system (‘simulink_unicycle.mdl’) 
Rys. 6. Model w Simulinku wejście-wyjście układu monocykl-rowerzysta (‘simulink_unicycle.mdl’)
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4.  Control of the unicycle-cyclist 
system

The aim of control is to force the pendulum to mainta-
in its upright equilibrium position. It has been done in 
MATLAB/Simulink by application of a control moment 
of force applied to the driving wheel.

The procedure of control is prepared accordingly to in-
structions provided by the MATLAB’s Control System To-
olbox [3] which supports: gain selection from root locus, 
pole placement and linear-quadratic-Gaussian (LQG) re-
gulation.

Let us rewrite eq. (17) in the matrix form [1]:

 ( ) ( ) ( ) ( )2M N O P C Fϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ+ + + + =�� � � � , (18)

which is prepared for solution in Simulink as below
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where:
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Corresponding Simulink model has been presented in 
fig. 6.

The unicycle-cyclist dynamical system is strongly non-
linear but to control it closely around the desired zero an-
gle position of second link, one needs to assume the follo-
wing simplifications

  

 

 . 

(20)

Applying simplifications (20) there 
has been computed in MATLAB the 
Laplace transfer function between in-
put MN(s) and output j2(s)

 ( )
10 2 4

3 6 2 5 6
2,328 4,237 28,37

1,495 1,626 9,181
e s e sG s

s e s e s e

- - +
=

+ - -
 

(21)

Figures 4a and 5a confirm that the 
system is unstable, but as it has been 
reduced to a linear one, it should be 
confirmed analytically, too.

State-space representation of the single input (the con-
trol moment) – single output (angle of rotation of the se-
cond link) system derived from eq. (21) is given as follows

 
0 0( ) ( ) ( ), ( ) ,

( ) ( ) ( ),

t A t Bu t t

t C t Du t

ζ ζ ζ ζ

υ ζ

= + =

= +

�  (22)

where z is the state variable, u is the output variable,

 

5 5 514.95 10 1.63 10 91.81 10 1
1 0 0 , 0 ,

1 0 0
A B

 - ⋅ ⋅ ⋅  
   = =   
       

 [ ]5 50 0.4237 10 0.0003 10 . , 0C D = - ⋅ ⋅ =  .   (23)

One can check stability of the system by finding some 
function V(x), called the Lyapunov function, which for the 
time invariant system takes the form

 
( ) 0, (0) 0, ( ) 0.V dV V V

dt
ζζ ζ

ζ
∂

> = = ≤
∂

�    (24)

For linear time invariant systems the procedure for fin-
ding the Lyapunov function comes down to the problem of 
solving the Lyapunov algebraic equation. The linear system 
(22) is stable if one is able to find a scalar function V(z) 
such that when this function is associated with the system, 
conditions (24) are satisfied [2]. The Lyapunov function can 
be chosen to be quadratic V(z) = zTP z for P = P T > 0
which in view of (22) leads to

 ( )( ) .T TV A P PAζ ζ ζ= +�  (25)

The system (22) with (23) is asymptotically stable if 
for any positive definite matrix Q = QT > 0 there exists 
P = PT > 0 such that

 .TA P PA Q+ = -  (26)

Matrix A has the following eigenvalues:
and hence this system 

is not asymptotically stable. In order to apply Lyapunov 
method an initial positive definite matrix Q = I3 is taken 
for the standard numerical procedure available in MATLAB 
as follows

 
( )

8 4 8

4

8

33.44 10 0.16 10 5.45 10
, 0.16 10 24.33 3.15 .

5.45 10 3.15 149.74

TP lyap A Q

- - -

-

-

 ⋅ ⋅ - ⋅
 = = ⋅ - 
 - ⋅ - - 

 

Fig. 7. System filter configuration for the analyzed problem
Rys. 7. Konfiguracja układu z filtrem Kalmana badanego zagad-

nienia
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Function lyap() solves the equation that represents the 
transpose of the algebraic Lyapunov equation (26) with Q 
= QT > 0. If some of eigenvalues of matrix P are in open 
left half complex plane, then the system (22) is unstable. 
Computing eigenvalues of matrix P, we get:

 
8

1 2 333.45 10 , 24.39, 149.79.P P Pλ λ λ-= ⋅ = = -  

As it could be expected, the investigated system is 
unstable. Therefore, in accordance to fig. 7 the linear qu-
adratic design approach (LQG) is applied.

The LQG design tools used in the numerical experiment 
include functions to compute the LQ-optimal state-feed-
back gain: lqr(), dlqr(), lqry(), and kalman() to design the 
Kalman filter. The optimal Kalman filter is described in [4].

To build the resulting LQG regulator, the lqgreg() func-
tion was applied in the following sequence of commands 
in MATLAB:

[ , , , ] (' _ ');
[ , ] ( , , , );

( , );
_ ( );
( _ ,10,1);opt

A B C D simulink unicycle
num den A B C D
G num den
unicycle ss G
k unicycle ss

=
=

=
=

=

linmod

ss2tf

tf

ss

lqry

[ , , , ] ( _ );
_ _ ( ,[ , ], ,[ , ]);

_ ( _ _ ,1,0.01);
( , );

_ ( _ , , 1);
0 : 0.01 : 10;

[

Kalman opt

A B C D unicycle ss
unicycle separated ss A B B C D D
k Kalman unicycle separated ss
F k k
unicycle feedback unicycle ss F
t
ϕ

=
=

=
=

= +
=

ssdata

ss

kalman

lqgreg

feedback

2

2

_ ,_ ] ( _ , );
( , _ );T

controlled t unicycle feedback t
t controlledϕ

= step

plot

Since the system measurements are corrupted by whi-
te noise, exact values of state variables are not available. 
The aim is to find a dynamical system that produces es-

timates for which the variance of the estimation error e(t) 
= z(t) - ze(t) is minimized. The result of application of the 
LQG Design Tools is presented in fig. 8. 

It is seen in fig. 8 that angular position of the second 
link stabilizes at zero within about 4 seconds.

5. Conclusions

A kinematic excitation has been applied to the third link 
allowing for cancellation of one degree of freedom of the 
dynamical system at hand. This motion has been treated as 
some disturbance signal, and upright position of the second 
link (the unicycle’s frame) has been subject to control.

Control of the system of two-degrees of freedom sys-
tem by means of only the standard PID control algori-
thm was unsuccessful. In the second attempt performed in  
MATLAB/Simulink there was possible to realize the con-
trol task by means of the LQG regulation that produced 
satisfactorily good time response of the controlled plant.

The work will be continued in the perspective of exten-
ding it on a higher dimensional unicycle-cyclist system by 
introduction of transversal vibrations (in a second plane 
being transversal to the direction of driving) and building 
of a prototype model.
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Rozwiązanie zagadnienia filtru Kalmana  
w kontroli i modelowaniu podwójnego wahadła 

odwróconego z tarciem tocznym

Streszczenie: Praca podejmuje rozwiązanie zagadnienia kontro-
li i modelowania dynamicznego układu monocykl-rowerzysta roz-
patrzonego jako podwójne wahadło odwrócone z tarciem tocznym 
drgające w płaszczyźnie prostopadłej do kierunku ruchu. Analizo-
wany obiekt składa się z dwóch podstawowych części, tzn. koła 
i podwójnego wahadła. Równania ruchu układu mechaniczne-
go, w którym wymuszenie kinematyczne przyłożono do masy re-
prezentującej ciało rowerzysty wyprowadzono stosując równania 
Lagrange’a drugiego rodzaju. Zadaniem kontroli było utrzymanie 
modelu układu monocykl-rowerzysta w niestabilnym położeniu 
równowagi w pobliżu zadanej wartości kąta obrotu. W procedurze 
numerycznej zrealizowanej w Simulinku moment siły kontroli przy-
łożono do koła napędzającego układ modelowy. Zagadnienie do-
boru filtru Kalmana rozwiązano w układzie sterowania ze sprzęże-
niem zwrotnym przy użyciu wbudowanych funkcji numerycznych 
wchodzących w skład biblioteki Control System Toolbox pakietu 
MATLAB. Zaproponowane podejście można rozszerzyć w przy-
szłości w celu rozwiązania podobnego problemu dynamicznego 
uwzględniającego drgania poprzeczne.

Słowa kluczowe: podwójne wahadło odwrócone, linearyzacja, 
modelowanie dynamiczne, tarcie toczne, filtr Kalmana, kontro-
la LQG
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