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Abstract: Mathematical methods of robust controller coefficients 
selection in H

¥
 spaces are very complicated. A control system 

integrator has to know functional analysis methods. To solve this 
kind of problem, evolutionary algorithms can be used. The paper 
presents both the method and simulation results of evolutionary 
algorithms application for a robust controller coefficients 
selection. To select robust controller, only two requirements are 
used: stability check and geometric dependency – minimizing the 
maximum distance between Nyquist diagrams of operations –  
G(jw) and 1/F(jw). Where G(jw) and F(jw) are controller and plant 
transfer functions in a feedback control system.
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1. Concept of control system optimality

Let the object be described by a linear operation F trans-
forming a set of signals belonging to Banach space V into 
themselves. Let’s denote as V(F) the set of all points x  ∈V 
where F-1(x) ∈ V and ||F-1(x)|| < ∞.

Let’s consider a system with feedback, as shown in the 
diagram, i.e. described with these equations:

 y = G(x) 
 x = z – F(y) (1)

where F and G are the operations transforming Banach 
space V into itself. Whereas z and x are the set signal and 
the error signal, respectively. Equations (1) can be noted 
in the form of:

 z – F(g(x)) = x                        (2)

or alternatively 

z = x + F(G(x))                       (3)

If there is a solution x ∈ V to the eq. (2) for z  ∈V(F) 
⊂ V, then x  ∈V(F). It results from the fact, that z  ∈ V(F) 
and F(G(x))  ∈V(F). Since each of the elements of the eq. 
(3) belongs to V(F), performing the operation F-1 for both 
sides, we can write

F-1(z) = F-1(x) + G(x)                   (4)

We will determine the operations in a natural way in 
the set of all functions transforming vector space X to 
space Y. Therefore, equation (4) can be noted as follows:

F-1(z) = (F-1 + G)(x)                    (5)

Assuming additionally that ||(F-1 + G)-1|| < ∞, we can 
note further 

(F-1 + G)-1 (F-1(z)) = x                 (6)

Calculating norms for both sides of the equation (6), 
we obtain

||x||=||(F-1+G)-1(F-1(z))|| ≤ ||(F-1 + G)-1|| ||(F-1(z))||  (7)

which can be further noted as

||x|| ≤ ||(F-1 + G)-1|| ||F-1(z)||             (8)

The limitation, ||F-1(z)|| < ∞, resulting from the 
affinity of the signal to the set V(F) is a natural limitation 
since an “ideal” control system performs, approximately, 
an operation reverse to operation F.

The condition, ||x|| ≤ ||(F-1 + G)-1|| < ∞, is most often 
the sufficient condition for the existence of solutions to 
equations (1) in spaces L2 or M for z ∈V(F).

Following the above considerations, we can formulate 
the following statement:

Let C denote a set of controllers, G, which can be 
used in the system in question. The H∞ optimization 
theory assumes that C = RH∞ (the controller is given by 
the measurable transmittance with real coefficients and 
limited to re s ≥ 0).

We shall call controller G* ∈R the optimal one for 
constraints belonging to set V(F) if for each G1∈R the 
following is true:
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Fig. 1. Control system diagram
Rys. 1. Schemat układu regulacji
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Theorem. Let operation F describing the object, and ope-
rations G ∈ C belonging to the set of controllers C trans-
form the set of signal from Banach space R (L2(0,∞) or M) 
into themselves. If, for controller G* ∈ C, the expression:
 

                   (9)

reaches a maximum different from zero then the control 
system described with equations (1) with optimal 
controller G* is optimal in terms of signal class R(F).

The above condition can be also noted for spectral 
transmittance
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Geometrically, this means that the smallest distance be-
tween the spectrum of the operation 1/F and the spectrum 
of operation –G equals the constant, r(G). We try to select 
controller G so that constant r(G) will be as big as possi-
ble and therefore, the signal norm – as small as possible.

The robust controller selection methodology compliant 
with the above considerations requires advanced mathe-
matical knowledge in functional analysis from the control 
system designer. However, evolutionary algorithms can be 
a perfect tool for optimization of control systems based 
on robust controller. The application of evolutionary me-
thods relieves us from the requirement of being familiar 
with functional analysis.

2.  Example of a robust controller 
selection

A ship was assumed as the controlled object. The block 
diagram for the ship route control system is illustrated 
in fig. 2. 

The following of the robust controller for the autopi-
lot was assumed:
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The coefficients of the equations in the numerator and 
the denominator are sought for the optimal form of the 

robust controller. During the selection of a robust con-
troller, it has to be taken into consideration that, accor-
ding to the geometrical interpretation of an optimal con-
troller, the sets limited with Nyquist curves for operations 
1/F(jω) and –G(jω) must be disjoint. The separation of 
those curves guarantees the stability of the feedback con-
trol system. The change of velocity and the change of 
the rudder angle lead to the change of the linear form of  

Fig. 2. Ship route control system with autopilot in the form of 
a robust controller

Rys. 2. System śledzenia trajektorii statku z autopilotem w posta-
ci regulatora odpornego

Fig. 3. The family of Nyquist characteristics for the ship, de-
pending on the rudder angle δ

Rys. 3.  Rodzina krzywych Nyquista w zależności od kąta wy-
chylenia steru δ

Nomoto’s model of the ship as the controlled 
object. The selection of the robust controller 
requires application of a form of the object, 
whose frequency spectrum provides stability of 
all other possible forms of the object. In case of 
a ship this condition, according to fig. 3, is met 
by the form of the object described with the 
equation for the largest rudder angle (δ = 35°).

During the computation, the minimization 
of the operation norm ||F(j�)-1+G(j�)|| 
in the frequency range of 0–0.16 rad/s is 
considered. There is no ground to consider 
higher frequencies due to the limitation of 
the operation speed of the rudder machine 

Fig. 4. Nyquist curves for controllers described with equations 
(5, 6) and for the ship

Rys. 4. Krzywe Nyquista dla regulatorów opisanych równaniami 
(5, 6) oraz statku
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and the inertness of the ship. The optimization of the 
robust controller equation coefficients was performed 
with evolutionary algorithms. As the result, three various 
robust controller transmittances were obtained, but the 
forms of the norms for the frequency range in question are 
almost homogenous.

Fig. 4 illustrates Nyquist frequency characteristics for 
obtained controllers and operation 1/F(j�). It can be seen 
that the sets limited with the operation inverse to the 
ship model and controllers are disjoint, and the control 
system with those controllers shall be stable. Spectral 
characteristics of the controllers overlap in low frequency 
ranges. 

Fig. 5 illustrates the norm of operations given with equ-
ation (10) for the obtained controllers G1, G2, and G3. 
The chart demonstrates that the norms for the controllers 
in question almost overlap.

Fig. 6 presents simulations of the ship travel towards 
consecutive set points, with wind speed of 6 °B and vario-
us wind directions while tracing the ship route with G3 
controller

The traces of the routes covered by the ship, presented 
in fig. 6 are very similar or partly overlapping.
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Fig. 5. Norm value for operation given with equation 10 for ob-
tained controllers

Rys. 5.  Wartości norm dla operacji opisanych równaniem (10) 
dla otrzymanych regulatorów

Fig. 6. Tracing the ship route at wind speed of 6 °B and various 
wind directions

Rys. 6. Symulacje śledzenia trajektorii statku dla prędkości wia-
tru 6 °B oraz różnych kierunków wiatru
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Techniki ewolucyjne doboru regulatorów 

odpornych

Streszczenie: Matematyczne metody doboru współczynników 
regulatora odpornego w przestrzeniach H∞  są bardzo skompli-
kowane. Projektant układu regulacji musi wykazywać się znajo-
mością technik analizy funkcjonalnej. Do rozwiązywania proble-
mów optymalizacji tego rodzaju doskonale nadają się algoryt-
my ewolucyjne. W artykule przedstawiono metodę oraz wyniki 
symulacji podczas doboru współczynników równania regulato-
ra odpornego. Do doboru użyte są tylko dwa kryteria: sprawdze-
nie stabilności i zależność geometryczna – minimalizacja naj-
większej odległości między krzywymi Nyquista operacji G(jω) 
i 1/F(jω), gdzie G(jω) i F(jω) są transmitancjami regulatora oraz 
obiektu regulacji w układzie sprzężenia zwrotnego.

Słowa kluczowe: algorytmy genetyczne, sterowanie odporne


