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Abstract: The positive asymptotically stable continuous-time 
linear systems are approximated by positive asymptotically stable 
discrete-time linear systems by the use of Pade type 
approximation. It is shown that the approximation preserves the 
positivity and asymptotic stability of the systems. The stabilization 
problem of positive unstable continuous-time and corresponding 
discrete-time linear systems by state-feedbacks is also 
addressed. 
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1.�Introduction 
In positive systems inputs, state variables and outputs 
take only non-negative values. Examples of positive 
systems are industrial processes inVolving chemical 
reactors, heat exchangers and distillation columns, storage 
systems, compartmental systems, water and atmospheric 
pollution models. A variety of models having positive 
linear behavior can be found in engineering, management 
science, economics, social sciences, biology and medicine, 
etc. Positive linear systems are defined on cones and not 
on linear spaces. Therefore, the theory of positive systems 
is more complicated and less advanced. An overview of 
state of the art in positive systems theory is given in the 
monographs [5, 7]. 

Stability of positive linear systems has been 
investigated in [5, 7] and of fractional linear systems in [2-
4, 10]. The problem of preservation of positivity by 
approximation the continuous-time linear systems by 
corresponding discrete-time linear systems has been 
addressed in [8]. 
In this paper it will be shown that using Pade type 
approximation of the exponential matrix the positive 
asymptotically stable continuous-time linear systems can 
be approximated by corresponding positive asymptotically 
stable discrete-time linear systems. 

The paper is organized as follows. In section 2 basic 
definitions and theorems concerning positive continuous-
time and discrete-time linear systems are recalled. The 
positivity of the linear systems are considered in section 3 
and the asymptotic stability of the systems in section 4. 
The stabilization problem by state-feedbacks of the 
positive systems is addressed in section 5. Concluding 
remarks are given in section 6. 

The following notation will be used: ℜ  - the set of 
real numbers, mn×ℜ  – the set of mn×  real matrices, 

mn×
+ℜ  – the set of mn×  matrices with nonnegative 

entries and �×
++ ℜ=ℜ nn , nM  – the set of nn×  Metzler 

matrices (real matrices with nonnegative off-diagonal 
entries), nsM  – the set of nn×  asymptotically stable 
Metzler matrices, nn

s
×

+ℜ  – the set of nn×  asymptotically 
stable positive matrices, nI – the nn×  identity matrix. 
 

2.�Preliminaries and the problem 
formulation 

Consider the continuous-time linear system 
 

����������� xxtuBtxAtx cc =+=�           (2.1) 

 
where ntx ℜ∈�� , mtu ℜ∈��  are the state and input 

vectors and nn
cA ×ℜ∈ , mn

cB ×ℜ∈ . 

 
Definition 2.1. [5, 7] The system (2.1) is called 
(internally) positive if ntx +ℜ∈�� , �≥t  for any initial 

conditions nxx +ℜ∈= ����  and all inputs mtu +ℜ∈�� , 

�≥t . 
Theorem 2.1. [5, 7] The system (2.1) is positive if and 
only if  

nc MA ∈ , mn
cB ×

+ℜ∈ .                       (2.2) 

 
Definition 2.2. [5, 7] The positive system (2.1) is called 
asymptotically stable if for ��� =tu , �≥t  

 
�����	 =

∞→
tx

t
 for all nx +ℜ∈� .             (2.3) 

 
Theorem 2.2. [5, 7] The positive system (2.1) is 
asymptotically stable if and only if all coefficients of the 
polynomial 
 

��
�
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���� asasasAsI n
n

n
cn ++++=− −

−   (2.4) 

 
are positive, i.e. �>ia  for ��� −= ni ...,,, . 

Now let us consider the discrete-time linear system 
 

++ ∈+= ZiuBxAx ididi ��                  (2.5) 
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where n
ix ℜ∈ , m

iu ℜ∈  are the state and input vectors 

and nn
dA ×ℜ∈ , mn

dB ×ℜ∈ . 

Definition 2.3. [5, 7] The system (2.5) is called 
(internally) positive if n

ix +ℜ∈ , +∈ Zi  for any initial 

conditions nx +ℜ∈�  and all inputs m
iu +ℜ∈ , +∈ Zi . 

Theorem 2.3. [5, 7] The system (2.5) is positive if and 
only if  

nn
dA ×

+ℜ∈ , mn
dB ×

+ℜ∈ .                     (2.6) 

 
Definition 2.4. [5, 7] The positive system (2.5) is called 
asymptotically stable if for �=iu , +∈ Zi  

 
���	 =

∞→ i
i

x  for all nx +ℜ∈� .                 (2.7) 

 
Theorem 2.4. [5, 7] The positive system (2.5) is 
asymptotically stable if and only if all coefficients of the 
polynomial 
 

��
�

� 


������� azazazAzI n
n

n
dn ++++=−+ −

−   (2.8) 

 
are positive, i.e. �>ia  for ��


���� −= ni . 

It is well-known that if the sampling is applied to the 
continuous-time system (2.1) then the corresponding 
discrete-time system (2.5) has the matrices 
 

hA
d

ceA = , �=
h

c
tA

d dtBeB c

�

              (2.9) 

 
where �>h  is the sampling time. 
 In this paper the following approximation of the 
matrix (2.9) will be applied 
 

����� −−+= cnncd AIIAA αα             (2.10) 

 

 where the coefficients ��� >==
h

h
ααα  is chosen so 

that nn
nc IA ×

+ℜ∈+ �� α . It is well-known [1] that if 

∈ sc nA M  then ����� ≠− cn AI α  for any �>α .  

 In the next sections it will be shown that the 
approximation (2.10) preserves: 

1. the positivity, i.e. if nc MA ∈  then nn
dA ×

+ℜ∈ , 

2. the asymptotic stability, i.e. if nsc MA ∈  then 
nn

sdA ×
+ℜ∈ . 

 

3.�Positivity of the systems 
In what follows the following lemma will be used. 
Lemma 3.1. If nsn MA ∈  then 

 
nn

nA ×
+

− ℜ∈− � .                                 (3.1) 

Proof. The proof will be accomplished by induction.  
For �=n  the hypothesis is evident. The hypothesis is 
true for �=n  since 
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 (3.2) 
 for �� ≥jia ; ���� =ji . 

Assuming that the hypothesis is true for �≥k  we 
shall show that it is also valid for �+k . Let �� ++ ∈ kk MA , 

��� � ≠+kA  and  
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then it is well-known [9] that 
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where 
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�� ≥jia ; kji �


����� = , 

�


� �������� kkkkk aaav +++ −−−= , 

�


� �������� +++ −−−= kkkk
T
k aaau , 

��
���� >−= −

++ kkkkkkk uAvaa .    (3.5) 

 
 
By assumption kk

kA ×
+

− ℜ∈− �  and kT
kv +ℜ∈− , k

kv +ℜ∈− , 

�� >+ka . Hence from (3.4) we have ���
�

+×+
+

−
+ ℜ∈− kk

kA . 

This completes the proof. � 
Theorem 3.1. If the continuous-time system (2.1) is 
positive and asymptotically stable then the discrete-time 
system (2.5) with the matrix (2.10) is also positive for any 
sampling time �>h . 
Proof. If the continuous-time system (2.1) is positive and 
asymptotically stable then nsc MA ∈  and there exists such 

�>α  that nn
nc IA ×

+ℜ∈+ �� α . If nsc MA ∈  then 

����� ≠− cn AI α  for any �>α  and nn
cn AI ×

+
− ℜ∈− ��� α . 

In this case nn
cnncd AIIAA ×

+
− ℜ∈−+= ����� αα  and the 

discrete-time system (2.5) by Theorem 2.3 is positive.   � 
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4.�Asymptotic stability of the system 
Lemma 4.1. If nksk ...,,, ��=  are eigenvalues of the 

matrix nc MA ∈  then the eigenvalues nkzk �


����=  of 

the matrix nn
dA ×

+ℜ∈  defined by (2.10) are given by 

 

k

k
k s

s
z

−
+=

α
α

 for nk �


����=                   (4.1) 

 
Proof. If nc MA ∈ , �>α  is chosen so that 

nn
nc IA ×

+ℜ∈+ �� α  and ks≠α  then the function 

k

k
k s

s
sf

−
+=

α
α��  is well defined on the spectrum 

nksk �


����=  of the matrix cA . In this case it is well-

known [6, 9] that equality (4.1) holds. � 
Theorem 4.1. If the positive continuous-time system 
(2.1) is asymptotically stable then the corresponding 
discrete-time positive system (2.5) is also asymptotically 
stable. 
Proof. If the positive continuous-time system (2.1) is 
asymptotically stable then the real parts kα−  of its 

eigenvalues kkk js βα ±−= , nk �


����=  are negative.  

In this case using (4.1) we obtain 
 

�<
+

±−
=

+
±−=

kk

kk

kk

kk
k j

j

j

j
z

βαα
βαα

βαα
βαα

��
     (4.2) 

 
and the discrete-time system (2.5) is also asymptotically 
stable. � 
 

5.�Stabilization of the system 
Consider the positive continuous-time linear system (2.1) 
and the corresponding positive discrete-time linear system 
(2.5). It is assumed that 
 

��� ≠cA  and mBc =����� .               (5.1) 

 
 If ��� ≠cA  then from (2.9) we have 

 

cn
hA

cd BIeAB c ��� −= −                         (5.2) 

 and 
mBd =�����                                     (5.3) 

 
 since ����� ≠− n

hA Ie c  and mBc =����� . 

 If the positive system (2.1) is unstable then applying 
a suitable state-feedback with a matrix nm

cK ×ℜ∈  we 

may stabilize the system, i.e. 
 

nscccc MKBAA ∈+= .                      (5.4) 

 

 The corresponding matrix of the discrete-time close-
loop system 
 

  nn
cnncd AIIAA ×

+
− ℜ∈−+= ����� αα             (5.5) 

 
 is nonnegative and asymptotically stable. 
 By Theorem 4.1 if nksk ...,,, ��=  are the eigenvalues 

of cA , located in the open left half of the complex plane, 

then the eigenvalues nkzk ...,,, ��=  of dA  are given by 

(4.1) and are located in the unit circle of the complex 
plane. Therefore, the asymptotic stability of the 
continuous-time system with cA  implies the asymptotic 

stability of the discrete-time system with dA  defined by 

(5.5). 
 Let the discrete-time system with Ad be unstable. We 
are looking for a state-feedback matrix nm

dK ×ℜ∈  such 

that the close-loop system is positive and asymptotically 
stable with the matrix dA , i.e. 

 
nn

sdddd KBAA ×
+ℜ∈+= .                         (5.6) 

 
 Solving the equation (5.6) with respect to dK  for 

given dA , dA  and dB  we obtain 

 
���� �

dd
T
dd

T
dd AABBBK −= − .                      (5.7) 

 
 The matrix (5.7) is the solution of (5.6) if and only if  
 

dddd
T
dd

T
dd AAAABBBB −=−− ���� � .             (5.8) 

 
 Therefore, the following theorem has been proved. 
Theorem 5.1. There exists a state-feedback gain matrix 
(5.7) of the positive and asymptotically stable discrete-
time close-loop system if the condition (5.8) is met. 
Remark 5.1. The state-feedback gain matrix cK  and 

dK  stabilizing the systems are in general case different 

and are related by 
 


������

����

����

��

�

�

dcncnncc

cnnc

cccnccnc

KBIAIIAA

AIIA

KBAIKBIA

−−++

−+=

−−++

−−

−

−

αα
αα

αα
 (5.9) 

 
 This equality follows immediately from (5.5), (5.4), 
(5.2) and (2.10). 
Example 5.1. Given the positive unstable continuous-
time system (2.1) with the matrices 
 

�
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�
�
�

�
=�

�

�
�
�

�−
=

�
�

�
��
��

cc BA .                     (5.10) 
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 Find a state-feedback gain matrix ��×ℜ∈cK  which 

preserve the positivity and stabilize the system. 
Let the close-loop matrix has the form 
 

�
�

�
�
�

�
−

−
=

��
��

cA .                                (5.11) 

 
 In this case the state-feedback gain matrix has the 
form 
 

���� −−=cK                                   (5.12) 

since 
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����
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��
��

cccc KBAA . (5.13) 

 
Using (2.10) and (5.2) we can compute the matrices 

dA  and dB  of the corresponding discrete-time system 

(2.5) for �=h  and �=α  
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      (5.14) 

and 



��
�

��
�

�
�

���
���

��
�

��
��

���

�
�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�−
�
�

�
�
�

�−
=

−= −
cndcd BIAAB

 (5.15) 

 
 By Theorem 2.3 the discrete-time system is positive 
since the matrices (5.14) and (5.15) have positive entries 
but the system is unstable. The polynomial (2.8) for the 
matrix (5.14) has the form 
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�
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������� � −−=
−−

−+
=−+ zz

z

z
AzI dn .(5.16) 

 
 By Theorem 2.4 the discrete-time system is unstable 
since two coefficients of the polynomial (5.16) are 
negative. 
Using (4.1) and taking into account that the matrix cA  

has the eigenvalues �� −=s , �� −=s  we obtain  
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α
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 (5.17) 

 
 Therefore, the corresponding close-loop discrete-time 
system is also asymptotically stable. 
 Using (2.10) we may compute the matrix dA  of the 

close-loop system 
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         (5.18a) 

and 
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(5.18b) 

 
 Figure 1 presents step response of the continuous-time 
system with matrices cA  and cB  and its discrete-time 

approximation with matrices (5.18). 
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Fig. 1. Step response of the continuous-time system and its 

discrete-time approximation 
Rys. 1. Odpowiedź skokowa układu z czasem ciągłym i  jej 

aproksymacja dyskretno-czasowa 
 
 
 Next from (5.7) the state-feedback gain matrix 
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dd AABBBK

    

(5.19) 
  
Note that the matrix (5.19) is different then the matrix 
(5.12). 
 Using (2.9) we may compute the matrix dA

 
 of the 

close-loop system 
 

�
�

�
�
�

�
==

����
��
����
�����
� hA

d
ceA         (5.20a) 

and 
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 In figure 2 we have the same step response of the 
continuous-time system but with discrete-time system 
given by the matrices (5.20). 
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Fig. 2. Step response of the continuous-time system and its   

discrete representation (5.20) 
Rys. 2. Odpowiedź skokowa układu z czasem ciągłym I jej 

dyskretna reprezentacja (5.20) 
 
 

6.�Concluding remarks 
The approximation of positive asymptotically stable 
continuous-time linear system by the use of Pade type 
approximation of the exponential matrix has been 
addressed. It has been shown that the approximation 
preserves the positivity and asymptotic stability of the 
systems. The stabilization problem of unstable positive 
linear system by state-feedback has been analyzed. 
Sufficient conditions for the stabilization of discrete-time 
linear systems by state-feedbacks have been established. 
The considerations have been illustrated by numerical 
example. The presented approach can be extended for 
fractional linear systems [10]. 
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Aproksymacja dodatnich stabilnych ciągłych 
układów liniowych przez dodatnie stabilne 

układy dyskretne 
 
Streszczenie: Dodatnie układy stabilne ciągłe są 
aproksymowane za pomocą liniowej aproksymacji Pade 
dodatnimi, stabilnymi układami dyskretnymi. Wykazano, że 
aproksymacja ta zachowuje dodatniość i stabilność 
asymptotyczną. Rozważania ogólne zostały zilustrowane 
przykładem numerycznym. 

Słowa kluczowe: aproksymacja, układ ciągły, dyskretny, 
dodatni, stabilny 
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