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Abstract: The paper is devoted to observer synthesis for linear 
discrete-time positive fractional systems with different fractional 
orders. The problem of finding a nonnegative gain matrix of the 
observer such that the observer is positive and asymptotically 
stable is formulated and solved by the use of linear programming 
(LP) and linear matrix inequality (LMI) methods. The proposed 
approach to the observer synthesis is illustrated by theoretical 
example. Numerical calculations and simulations have been 
performed in the MATLAB/Simulink program environment. 
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any sophisticated analytical procedures to control 
system design are based on the assumption that the 

full state vector of the system is available for measure-
ment. The example of such control procedure is placement 
of the unstable system eigenvalues. In many practical 
systems the entire state vector is not available for meas-
urement. In some cases measurements may require the use 
of costly measurement devices and it may be unreasonable 
to measure all state variables. An auxiliary dynamical 
system, which reconstructs the state vector, is known as a 
full-order or an identity observer, and is coupled to the 
original system through the available system inputs and 
outputs [1].  
 In this paper the positive fractional discrete-time sys-
tems will be considered. In positive dynamical systems 
each inputs, state variables and outputs take only non-
negative values. Examples of such systems are processes 
involving chemical reactors, distillation column, compart-
mental systems or atmospheric pollution models [2]. Dy-
namical systems described by fractional order differential 
or difference equations have been investigated in several 
areas such as viscoelasticity, diffusion processes, electro-
chemistry, control theory, electrical engineering, etc. (see 
[3–6] and references therein, for example). 
 The problem of the observer synthesis (full-order and 
reduced-order) for fractional discrete-time systems have 
been studied for example in [7, 8]. An linear matrix ine-
quality (LMI) approach to observer synthesis for positive 
discrete-time integer order systems has been proposed  
in [9] and linear programming (LP) approach in [10].  
 The considerations presented in this paper are the 
complement of the general control theory of the fractional 
discrete-time systems and can be applied in different areas 
of sciences. 

1.�Problem formulation 
Let us denote by mn×ℜ  ( nm×� ) the set of real (complex) 
matrices with n  rows and �  columns and .1×ℜ=ℜ nn  
The set of real mn ×  matrices with nonnegative entries 
will be denoted by mn×

+ℜ ).( 1×
+ ℜ=ℜ nn  A matrix 

mn
ijaA ×

+ℜ∈= ][  (a vector n
ixx +ℜ∈= ][ ) will be called 

strictly positive and denoted by 0>A  if ,0>ija  
;,...2,1 ni = mj ,...,2,1=  (by 0>x  if 0>ix , ni ,...2,1= ). 

The set of nonnegative integers will be denoted by +Z . 
The set of nn ×  symmetric matrices will be denoted by 

.nS  A matrix nSQ ∈  is positive (negative) define 0�Q  
( 0�Q ) if its quadratic form is positive (negative), i.e. 

0>QxxT )0( <QxxT  for every nonzero .nx ℜ∈ The 
symbol ""∀  should be read “for all” and the symbol ""∈  
should be read “is an element of”. 
 Let us consider the discrete-time fractional system  
of the form [8]: 
 
                                
 

  
 (1) 

      

                                           (2) 
 

with different orders ( nααα ≠≠≠ ...21 ) where 
,nnA ×ℜ∈ ,mnB ×ℜ∈ ,npC ×ℜ∈ nrr ...,,1),1,0( =∈α , and  

       
 

 
 

  (3) 
 

In (3)  iii yux ,,  are the state, input and output vectors. 
 The following conditions for the system (1), (2) can be 
proved in the same manner as for the positive fractional 
system with the same order α  ( nααα === ...21 ), see 
[13], for example. 
 
Lemma 1. If  

                                                       
    (4) 

then 
                                                    (5) 

where kα  has the form (3). 
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 The following conditions for the system (1), (2) can be 
proved in the same manner as for the positive fractional 
system with the same order α  ( nααα === ...21 ), see 
[13], for example. 
 
Lemma 1. If  
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then 
                                                        (5) 

where kα  has the form (3). 
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Lemma 2. If (4) holds and 
 
 

                                                              (6) 
then                                              

(7) 
 
 
Theorem 1. The fractional system (1), (2) is positive 
(internally) if and only if 
 

 (8) 
 

 In the next part of the paper, we will consider the 
fractional system (1), (2) with nααα ≠≠≠ ...21  as the 
positive system (according with Theorem 1) with the 
scalar output y and [ ] .... 1

1
n

nccC ×
+ℜ∈=  We will 

assume that the input )( m
iu +ℜ∈  and the output 

)( p
iy +ℜ∈  variables of the system can be directly meas-

ured. 
 
Definition 1. The state (full-order) observer of the sys-
tem (1), (2) is the system which estimates the state varia-
bles n

ix +ℜ∈  (3). 
 
Definition 2. The observer of the system (1), (2) is given 
by the following equation: 
 
 
        

  (9) 
 
 

where 
 

                                                 (10) 
 

  
is an estimate of the state variable n

ix +ℜ∈  and 
pnL ×

+ℜ∈  is a gain matrix of the observer. 
 
From the equation (9) it follows that the observer for the 
positive system (1), (2) should be positive. 
 
Definition 3. The set of all �∈λ which are the eigen-
values of nnA ×∈�  is called the spectrum of A  and is 
denoted by ).(Aσ  
 
Definition 4. The matrix nn

ijaA ×ℜ∈= ][  is called 
a Schur matrix if it has all eigenvalues with moduli less 
than one, i.e. nii ,...,2,1,1|| =<λ  where nii ...,,2,1, =λ
are the eigenvalues of .A  
 The main purpose of the paper is to give conditions for 
the existence of the observer (9) for discrete-time positive 
fractional system (1), (2) with different fractional orders  
( nααα ≠≠≠ ...21 ) and a method for computation of the 
gain matrix pnL ×

+ℜ∈  of the asymptotic stable positive 
observer. 
 

2.�The main result 
In this paragraph we shall show that the problem of ob-
server synthesis can be reduced to a feasibility problem  
of: a linear programming (LP) and a linear matrix ine-
quality (LMI). 

Linear programming method 
The linear programming (LP) is the problem of maximiz-
ing or minimizing a linear function over a convex polyhe-
dron specified by linear and non-negativity constraints 
[14]. This problem can be expressed in canonical form: 
 
                                                        
 

    
(11)  

where x  represents the vector of variables (to be deter-
mined), c  and b  are vectors of known coefficients. The 
expression to be maximized or minimized is called  
the objective function. The inequalities bAx ≤  are the 
constraints which specify a convex polytope over which 
the objective function is to be optimized. 
 Let the vector of an error of the estimate has the form: 
 

                                         (12) 
 

Substituting (1) and (9) into (12) we get: 
 
 
              

(13) 
 
 
 

where 
                                                 (14) 

 
 
If the matrix G  is a Schur matrix then the error ie (12) 
will approach zero and ix̂  will approach ix , i.e.: 

              
    (15) 

 
and the observer (9) is asymptotically stable. 
 The problem of synthesis of the observer (9) for the 
positive system (1), (2) we can formulate as follows: 
 

Given the matrix αA  and C  o (1), (2). We are 
looking for the gain matrix pnL ×

+ℜ∈  of the observer 
such that the matrix G  (14) is a Schur matrix with 
nonnegative elements. 

 
 In the control theory of the standard continuous-time  
or discrete-time system a method which is frequently used 
to finding of the matrix L  is Ackermann’s formula  
[15, 16]. 

nnA ×
+ℜ∈+ )( 1α

[ ] ,ˆ...ˆˆ 1 nn
iii xxx +ℜ∈=

0and
tosubject

imizemax

≥
≤

x
bAx

xcT

.)( nnLCAG ×
+ℜ∈−= α
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 By generalization of conditions given in [10] for the 
positive discrete-time systems with integer order we can 
write the following theorem: 
 
Theorem 2. The following statements are equivalent: 
i)� There exists a positive observer (9) of the positive 

fractional system (1), (2). 
ii)� There exists a matrix pnL ×

+ℜ∈  such that 0>LC ,
0>G  and G  (14) is a Schur matrix. 

iii)� The following LP problem is feasible: 
 

                                        
 
 
 
 

   (16) 
 
where ,]...[ 1

n
n ℜ∈= λλλ  .]...[ 1

n
nzzz ℜ∈=   

 
 Moreover, a matrix L  satisfying the statement ii) can 
be calculated as: 
 

(17) 
 

where the variables ii z,λ can be any feasible solution to 
the above LP problem. 
 
Proof. See [10], for example.  
 
 The above linear programming problem can be formu-
lated and solved for example in the MATLAB package 
with Optimization toolbox. 
 

Linear matrix inequality method 
The linear matrix inequality (LMI) has the following 
canonical form [17]:  
 
                                               

   (18) 
 

 
where mx ℜ∈  is the variable and the symmetric matrices 

nnT
ii FF ×ℜ∈=  mi ,...,1,0=  are given. Thus, )(xF is an 

affine function of the elements of .x  
  
The inequality means that ���� is a positive define ma-
trix, that is: 
 

                                  (19) 
 

 The form (18) is a strict LMI and is feasible if the set 
}0)(|{ �xFx  is nonempty. Any feasible nonstrict LMI 

can be reduced to an equivalent strict LMI that is feasible 
by eliminating implicit equality constraints and then 
reducing the resulting LMI by removing any constant 
nullspace. 

 It is well-kown [2] that the positive discrete-time (in-
teger order) system is asymptotically stable ( nnA ×

+ℜ∈  
is a Schur matrix) if and only if the following inequalities 
with respect to the diagonal matrix variable P  are satis-
fied: 

 
(20) 

 
 The problem of the observer synthesis for the system 
(1), (2) we can reduce to finding the matrix pnL ×

+ℜ∈ , 
such that the inequality 
 

                     (21) 
 
is satisfied, where G  has the form (14).  
  

Using Schur complement formula and applying the 
congruence transformation into (21) we obtain: 
                                                        
 

    (22) 
 

 
Premultiplying both sides (22) by 01 �−P  and taking 

1−= PQ  we get the final LMI condition in the form: 
                                                   
 

   (23) 
 
 

where  .1LPY −=   
  

We can sum up the above considerations in the follow-
ing theorem based on the results given in [9]:  
 
Theorem 3. There exists an asymptotically stable posi-
tive observer (9) of the system (1), (2) if and only if the 
condition (23) is satisfied with respect to the matrix vari-
ables 1−= PQ  )),...,(diag( 1 nppP =  and .pnY ×

+ℜ∈   
The gain matrix pnL ×

+ℜ∈  of the observer can be com-
puted from: 
 

                                                           (24) 
 

Proof. See [9], for example. 
 
 The linear matrix inequality (23) can be formulated and 
solved in the MATLAB package together with public 
domain software: SeDuMi solver and YALMIP parser. 
 
3.�Example 
Let us consider the fractional system defined by equations 
(1) and (2) with matrices: 
 

     (25) 
 
and  .4.0,2.0 21 == αα   

Design a full-order positive observer for the above system. 
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where the variables ii z,λ can be any feasible solution to 
the above LP problem. 
 
Proof. See [10], for example.  
 
 The above linear programming problem can be formu-
lated and solved for example in the MATLAB package 
with Optimization toolbox. 
 

Linear matrix inequality method 
The linear matrix inequality (LMI) has the following 
canonical form [17]:  
 
                                               

   (18) 
 

 
where mx ℜ∈  is the variable and the symmetric matrices 

nnT
ii FF ×ℜ∈=  mi ,...,1,0=  are given. Thus, )(xF is an 

affine function of the elements of .x  
  
The inequality means that ���� is a positive define ma-
trix, that is: 
 

                                  (19) 
 

 The form (18) is a strict LMI and is feasible if the set 
}0)(|{ �xFx  is nonempty. Any feasible nonstrict LMI 

can be reduced to an equivalent strict LMI that is feasible 
by eliminating implicit equality constraints and then 
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Fig. 1. State variables (solid line) and their estimates (dashed 

line)  
Rys. 1. Zmienne stanu (linia ciągła) oraz ich estymaty (linia 

przerywana) 

 
Thus, the observer is positive and asymptotically sta-

ble. The results of estimation of the state variables of the 
considered system (25) with the sampling period of 

sec1.0 are shown in fig. 1. 
 
 

  
The initial conditions of the system and the observer 
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The initial conditions of the system and the observer 
have the form: 
                          
 

   (34) 
 

 
It is easy to check that the error ie  (12) is equal to zero.  
 
−� LMI method 
Using MATLAB package together with SeDuMi solver 
and YALMIP parser it is easy to check that for the ma-
trix: 
 

   (35) 
 
 

the inequality (23) is satisfied. Computing the gain matrix 
of the observer from (24) we get: 
                                        

   (36) 
 

With (36) the matrix G  (14) is a Schur matrix and has 
the following form: 
 

            (37) 
 

The results of estimation of the state variables of the 
system (25) with the sampling period of sec1.0 are shown 
in fig. 2. 
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 We will check the positivity of the system with (25). 
Using (6) we obtain: 
 
 

   (26) 
 
 
 

Thus, by Theorem 1 the considered fractional system 
with .4.0,2.0 21 == αα  is positive. Two methods are 
used to design the observer: LP method and LMI method. 
 
−� LP method 
According with (11) the vector x  has the form: 

     
   (27) 

 
The conditions we can write in the following forms: 
 
    

 
(28) 

 
 
                                                          

   (29) 
 

 
                                              
 

    
   (30) 

 
 
               
 
 

 (31) 
 

 
Solving (11) with (28) − (31) and with the zero vector 

b  of appropriate dimensions in the MATLAB environ-
ment and using m-function linprog we obtain the gain 
matrix (17) in the form: 

 
 
                                                      

    (32) 
 

It is easy to check that the matrix (14) with (32) is 
a Schur matrix which has the structure: 
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Fig. 2. State variables (solid line) and their estimates (dashed 

line)  
Rys. 2. Zmienne stanu (linia ciągła) oraz ich estymaty (linia 

przerywana) 

From the obtained results it follows that the state var-
iables of the positive fractional system (25) are estimated 
correctly. Moreover, from Fig.1 it follows that in the con-
sidered case the dynamics of observer projected by the use 
of LP method is faster than the observer projected by the 
use of LMI method. It follows from the fact that the spec-
trum of (33) is }05.0,0{)( )( =LPGσ and the spectrum of 
(37) is }05.0,08.0{)( )( =LMIGσ  It is well-known [10, 19] 
that if the eigenvalues of the matrix of asymptotic stable 
dynamical system are located the nearer of the coordinate 
origin (in the z  plane) then the transient processes (state 
variables) tends faster to zero.  
   
4.�Concluding remarks 
In the paper the problem of observer synthesis for positive 
linear discrete-time systems with different fractional order 
have been considered. It has been shown that proposed 
conditions of the existence of asymptotic stable positive 
observer are solvable in term of linear programming and 
linear matrix inequality problems. An example to illus-
trate the effectiveness and correctness of the obtained 
results has been given.  
 The presented considerations can be easily extended 
for reduced-order observer synthesis for standard and 
positive discrete-time fractional systems with different 
fractional orders. 
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From the obtained results it follows that the state var-
iables of the positive fractional system (25) are estimated 
correctly. Moreover, from Fig.1 it follows that in the con-
sidered case the dynamics of observer projected by the use 
of LP method is faster than the observer projected by the 
use of LMI method. It follows from the fact that the spec-
trum of (33) is }05.0,0{)( )( =LPGσ and the spectrum of 
(37) is }05.0,08.0{)( )( =LMIGσ  It is well-known [10, 19] 
that if the eigenvalues of the matrix of asymptotic stable 
dynamical system are located the nearer of the coordinate 
origin (in the z  plane) then the transient processes (state 
variables) tends faster to zero.  
   
4.�Concluding remarks 
In the paper the problem of observer synthesis for positive 
linear discrete-time systems with different fractional order 
have been considered. It has been shown that proposed 
conditions of the existence of asymptotic stable positive 
observer are solvable in term of linear programming and 
linear matrix inequality problems. An example to illus-
trate the effectiveness and correctness of the obtained 
results has been given.  
 The presented considerations can be easily extended 
for reduced-order observer synthesis for standard and 
positive discrete-time fractional systems with different 
fractional orders. 
  

Acknowledgment 
This work was supported by the National Science Center 
in Poland under grant NN 514 6389 40. 
 

References 
1.� Luenberger D.G., Introduction to dynamic systems: 

Theory, Models, and applications, John Wiley & 
Sons, New York 1979. 



Pomiary Automatyka Robotyka  nr 2/2013 381

Synteza obserwatora układów dyskretnych 
o różnych niecałkowitych rzędach

Streszczenie: W pracy rozpatrzono problem syntezy obserwa-
torów dla dodatnich układów dyskretnych różnych niecałkowi-
tych rzędów w równaniu stanu. Wykorzystując podejście oparte 
na typowym zadaniu programowania liniowego (LP) oraz zadaniu 
sformułowanym w ramach liniowych nierówności macierzowych 
(LMI) pokazano, że jest możliwe uzyskanie dodatniego asympto-
tycznie stabilnego obserwatora. Są to warunki dostateczne, alter-
natywne w stosunku do podanych w [5,18] dla układów niedodat-
nich. Zaprojektowany obserwator poprawnie estymuje (odtwarza) 
zmienne stanu przyjętego do rozważań dyskretnego układu nie-
całkowitego rzędu. Wyniki obliczeniowe uzyskano w środowisku 
programowym MATLAB z wykorzystaniem biblioteki Optimization 
oraz pakietów SeDuMi [20] i YALMIP [14]. Rezultaty symulacyj-
ne uzyskano przy wykorzystaniu dodatkowej biblioteki Fractional 
States Space Toolkit [18].

Słowa kluczowe: rząd niecałkowity, układ, dodatni, dyskretny, ob-
serwator, programowanie liniowe, liniowa nierówność macierzowa
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