
426

NAUKA

Configurable Operator Interface
for CPDev Environment

Marcin Jamro, Bartosz Trybus

Rzeszów University of Technology, Department of Computer and Control Engineering

Abstract: The paper presents a graphical extension to the IEC
61131-3 CPDev programming environment. The extension called
CPVis provides development tools and runtime components to
create an operator interface for control software. CPVis editor is
used to design display pages. Graphic objects are selected from
libraries and represent visual controls on the display. The target
operator panel runs CPVis graphics runtime to process the dis-
play configuration. Update of the display is done by reflecting
changes of variable values processed by CPDev virtual machine.

Keywords: operator interface, HMI, control systems, visuali-
zation

1.�Introduction
Operator panels are an important part of control and
monitoring systems. They are often used for examining
values of process variables or setting parameters by
providing Human-Machine Interface (HMI) [7, 11–12].
The former solutions using simple alphanumeric LCD
displays or keypads are currently frequently replaced with
high-resolution graphic panels with touch screen capabili-
ties.

The paper presents the concept and implementation of
a configurable graphical operator panel for CPDev
engineering environment (Control Program Developer) [3].
CPDev, developed at Rzeszów University of Technology,
contains programming tools and multi-platform runtime
(virtual machine) for IEC 61131-3 [1] control software.
During development of CPDev industrial applications,
a need arose to extend it with a mechanism to create and
maintain graphical HMI interfaces. The main assumptions
of the extension, called CPVis (Control Program Visualiz-
er), were: easy composition of visualization displays by
using pre-defined graphical objects, low resource usage,
coexistence and exchanging data with CPDev control
software to access real-time variable values.
 The paper is organized as follows: Section 2 presents
briefly the CPDev engineering environment and its appli-
cations for industrial control; Section 3 describes concepts
of the configurable operator panel and its software archi-
tecture; the visual editor used to design and configure
HMI displays is described in Section 4; the section also
presents graphical objects that are placed on the displays;
Section 5 gives some details on the runtime part of the
presented solution. The graphics runtime is executed on
the target HMI panel, processes a binary configuration
with display data and exchanges process information with
CPDev virtual machine.

Fig. 1. Main window of CPDev engineering environment
Rys. 1. Główne okno środowiska inżynierskiego CPDev

Pomiary Automatyka Robotyka nr 2/2013 427

2.�CPDev engineering environment
CPDev environment integrates tools for creating, compiling
and running control software [4]. The programmer creates
a new project in CPDev IDE (Integrated Development
Environment), which main window is shown in fig. 1. Con-
trol program is composed of POUs (Program Organization-
al Units) which can be written in all five languages defined
in IEC 61131-3 standard, both textual and graphical. These
languages are: ST (Structured Text), IL (Instruction List),
FBD (Function Block Diagram), LD (Ladder Diagram) and
SFC (Sequential Function Chart) [2–3].
 The source program is processed by the CPDev
compiler which generates universal executable code.
CPDev Virtual Machine must be implemented in particu-
lar target platform to execute the VMASM code [10]. The
machine can be applied for Programmable Logic Control-
lers (PLCs), Programmable Automation Controllers
(PACs) or distributed control systems (DCSs). Other
components of the CPDev environment include hardware
and communication configuration tool, simulator, debug-
ger and a testing platform for POU unit tests [6].
 CPDev has been implemented in SMC industrial
controller from LUMEL S.A., Zielona Góra, Poland [9].
SMC operates as a central unit in small DCS systems and
has been used in several applications involving measure-
ments, control, monitoring and diagnostics. Mini-Guard
Ship Control and Positioning System from Praxis Auto-
mation Technology B.V. [8], Leiderdorp, The Netherlands,
is another application [5]. Mini-Guard consists of several
types of dedicated controllers communicating over Ether-
net. Another CPDev application is a soft-controller, i.e.
PC equipped with I/O boards used for lab and teaching
purposes. Current works involve applying CPDev to
pumping stations and transportation.

3.�Operator Interface architecture
Software architecture of the operator interface is present-
ed in fig. 2. The upper part shows modules used during
design stage. The main component here is a visualization
project maintained by CPVis editor. The project contains
information about one or more visualization displays
(pages) that will be presented to the operator. Each dis-
play contains instances of graphical objects, i.e. visual
controls like bar graphs, pie charts, indicators, numeric
values, buttons, or bitmaps. Information about these
objects (their definitions) is taken from graphic object
libraries, either predefined or specific to the application.
 As can be seen, the software structure of the CPDev
operator interface is oriented towards graphical objects.
The HMI designer’s role is to compose the visualization
displays by selecting objects from libraries and configure
their parameters (position, size, colors, etc.). This is
achieved with CPVis editor (see the next section) and
does not require a designer to have programming skills.
 The visualization project can be stored in XML file for
later use or exported to a binary form which is used by
the runtime part of CPVis.

 The lower part of fig. 2 shows runtime components of
CPDev operator interface. The components are sometimes
referred as CPDev graphic subsystem and can be executed
on a HMI panel, a controller equipped with a graphic
LCD display or a PC acting as a monitoring station.
CPVis graphics runtime interprets the binary file generat-
ed from the design project. The binary contains all visual-
ization data, including displays, configuration, graphical
objects and their parameters.
 To implement dynamic update of the presented dis-
play a data exchange link is established between the
graphics runtime and CPDev virtual machine (fig. 2).
This link is platform specific. If these two components are
run on the same hardware (the most common scenario) it
can be implemented as a shared memory. In another case
a communication protocol can be used (e.g. Modbus).

Fig. 2. Software architecture of operator interface for CPDev
environment

Rys. 2. Architektura interfejsu operatorskiego dla środowiska
CPDev

Each graphic object has a set of parameters (fig. 3).
Instances of the objects are configurable during the design
stage. Some parameters have default values, predefined in
the graphic objects library. The defaults can be overridden
if required. The user can specify values for the parameters,
such as background color, numeric value, maximum value
or text to be displayed. The libraries contain also infor-
mation about type of the parameter, its name or descrip-
tion. The parameter values may not stay constant (default
or fixed) during execution. Instead, the designer can bind
a parameter to CPDev program variables (global variables
only). In such a case, the actual parameter value will be
fetched from the CPDev virtual machine and the graph-
ical object state will automatically reflect the value of the
variable. As seen, real-time update of the screen is also
oriented towards objects.

428

NAUKA

Fig. 3. Choosing values of parameters for graphic objects
Rys. 3. Wybór wartości parametrów obiektów graficznych

 Each of the graphical object parameters has a specified
type. The operator panel for the CPDev environment
supports nine data types for this purpose. Some of them
are simple IEC 61131-3 types: BOOL (logical), BYTE and
INT (integers), REAL (floating point number). The other
types are CPVis-specific: COLOR (index from a color
palette), RANGE (with given minimum and maximum
value), TEXT (character string), FONT (index of a font
style), IMAGE (bitmap) or COMPLEX (can contain
other types, excluding COMPLEX). Declaration of the
CPDev variables that will be bound to the graphical ob-
ject parameters should match their types such as BOOL,
BYTE, INT, REAL. However, COLOR and FONT
parameters can also be mapped to integer variables
holding index values.
 As stated above, graphic object definitions are stored
in libraries. The concept of the operator interface allows

to extend the predefined set of objects with a specific ones
by creating a custom library. It will contain definitions of
the custom objects. The object definition includes its
parameters and visual characteristics. The visual
representation of an object is defined in C language using
universal drawing primitives like line, rectangle or circle.
This way, the same drawing code is used by the develop-
ment software (CPVis editor) and the graphics runtime.
 It is worth mentioning that custom objects can reduce
time needed by graphic processing, especially when limited
resources are concerned. While applying CPVis to
a particular application, it is a good practice to create
a custom object instead of using the same pattern of
graphic shapes multiple times. Such an approach can also
positively influence efficiency of the design stage and
simplifies project maintenance.

4.�Editor of visualization displays
CPVis editor is a tool of CPDev engineering environment
used to create and edit visualization displays. Design of
the operator interface is an integral part of CPDev pro-
ject, together with definition of POUs, control tasks,
hardware configuration etc.
 The editor works in WYSIWYG (What You See Is
What You Get) mode. Left part of the main window
(fig. 4) contains project tree with visualization displays.
Two displays are defined in the sample project (fig. 4),
namely Display #1, Display #2. The tree also shows
graphic object libraries used by the project. Here, only one
library is used (CPVis.Object.Basic). The project tree
expands the library branch showing a list of graphic ob-
jects defined in the library. There are simple graphic ob-
jects like Image or Image Part, Box and Rounded Box,
Text Box, Line. The more sophisticated objects are Bar
Graph, Slider, Pie Graph, or Dial Graph. The main part

Fig. 4. Main window of CPVis editor
Rys. 4. Główne okno edytora CPVis

Pomiary Automatyka Robotyka nr 2/2013 429

of the CPVis editor’s window is used as a work area. Two
displays are shown in fig. 4 – Display #1 in the
center and Display #2 on the right. They contain objects
from the library such as bar graphs, pie graphs, process
values and others.
 CPVis editor provides a set of functionalities that are
used by the designer to prepare a configuration for the
operator panel. The following features are available:

-� visualization displays management,
-� support of graphic object libraries,
-� adding graphic objects to the display,
-� moving or deleting graphic objects,
-� setting parameters of graphic objects,
-� undoing or redoing operations,
-� saving and loading a project,
-� adjusting display settings to user preferences

(e.g. changing a size of editing grid).
The display is composed by dragging an object from the
library tree and placing it on the display. Parameters of
graphic objects can be set at design time, such as chang-
ing the color of a box (filled rectangle). As previously said,
some parameters can be bound to CPDev variables, mean-
ing that they will update their values during runtime. The
editor allows to select global variables defined in CPDev
project as a source for the parameter value, as shown in
fig. 5, where the variable SENSOR1 is bound to the
Current Value parameter of pie graph.

It can be seen in fig. 4 that the designer can adjust the
graphic objects sizes (e.g. bar graphs). They can also be
drawn with a custom aspect ratio. In addition, bar
graphs can be placed either vertically or horizontally (this
feature is not shown). Such capabilities allow flexible
arrangement of the objects on the display and indicate the
more important elements. The editing grid can be used for
consistent object alignment.
 Graphic objects can overlap on the display. The
designer can change the Z-order in which the objects
appear on the screen by moving them up, down, placing

them directly at the top or at the bottom of the screen.
However, to reduce CPU load during display refreshment,
this feature is limited to a situation when the covered
objects are not updatable (i.e. not bound to CPDev varia-
bles). CPVis editor will warn the designer if this limita-
tion is not met. Usually, the covered objects are static
parts of the display (images or constant texts) used to
create a background for the top, updatable ones. For
example, in the display presented in fig. 4 the row of bar
graphs at the bottom is emphasized by the grey back-
ground bitmap with inscriptions.
 Visualization display editing was implemented with
the assumption that it will be intuitive and will not re-
quire special programming skills. Setting parameter values
can be done via build-in editors for different value types.
For example, color picker can be used instead of entering
an index value in a palette, numeric range can be easily
set with the specialized dialog etc. Upon user entry of
a value, the editor performs basic correctness checking.
For example, if the type of entered value is different from
the parameter type, the value is rejected. Similarly, the
editor will allow to bind only those CPDev variables
which types match the parameter’s type.
 The visualization design is stored in XML file along-
side the associated CPDev project. It can be later open for
modification or extension. The editor automatically cre-
ates backups of the file. When the design is ready it can
be stored in a binary file (CPV file) used at runtime.

5.�Graphics runtime components
As presented in fig. 2, the CPV binary file created as
a result of the design stage is used by the graphics
runtime to produce display output. The CPV file contains
information about defined displays (pages), graphic ob-
jects, that are used, and parameter settings. The structure
of the file is shown in fig. 6.
 CPV file begins with the header. It has fixed length
and stores general information of the visualization file,
such as version identifier and number of defined displays.
 Next part of the CPV file contains definitions of visu-
alization displays. Data of each display is stored in
a separate section, starting with a header, which stores
information about the display (e.g. its width and height).
Instances of graphic objects being a part of the display are
also stored in the CPV file. Each of them is identified by
an unique identifier stored in the object’s header, together
with X, Y coordinates and its size. Object parameters are
represented by the parameter header with information
about its size (in bytes) and data type. Value of the
parameter can be stored directly in the CPV file as fixed
(i.e. set at design time or used default) or can be bound to
CPDev variable. In the latter case, the CPV file holds
address of the CPDev global variable.
 The contents of the CPV file is copied to the memory
of the target HMI device. If a communication mechanism
between the development PC and the device is available,
it can be used to transmit the visualization data. This is
similar to the way in which a compiled control program is
transmitted to the CPDev virtual machine [3].

Fig. 5. Binding parameters to CPDev variables
Rys. 5. Przypisywanie parametrów do zmiennych CPDev

430

NAUKA

The firmware of the target HMI device should contain the
CPVis graphics runtime that interprets the CPV
binary. The runtime is written in C++ and can be ported
to different platforms. Until now, ARM-based HMI panel
and Windows PC have been used as targets.
 To update the display, the function drawScreen () of
the runtime should be invoked periodically. If the refresh
cycle is synchronized with the cycle of the CPDev virtual
machine, the updates will immediately reflect changes of
the CPDev variables that are bound to graphic objects’
parameters. The runtime will automatically exchange data
with the CPDev virtual machine to fix current values of
the parameters.
 Since the designer can define multiple displays in the
CPVis editor, the graphics runtime has to support switch-
ing the visualization pages. A global CPDev variable
(integer) is bound to the visualization project and repre-
sents the currently visible display. If the value of the
variable changes (for example as a result of pressing
a button), the visualization display will automatically be
changed to the one identified by the new value.
 To improve drawing speed, a detection mechanism is
used that determines whether an objects requires a re-
draw. For example, if the value of the CPDev variable
bound to the object have not changed since the last call of

drawScreen(), the object will not be redrawn. This signifi-
cantly speeds up processing, because only a portion of the
display is refreshed. Another implemented optimization
causes skipping an interpretation of the parts of the CPV
binary that will not be used (such as data of inactive
objects or displays).
 The CPDev program running on the virtual machine
can interact with the graphic subsystem in a few ways. As
already mentioned, it provides data for graphic objects
that are used to show values of program variables. For
example, a bar graph may represent a REAL variable in
a graphical manner, while a text box can be used to
display the value as a number. Another option is to bind
a CPDev variable to a parameter that represents some
visual characteristics of an object. This is especially useful
with COLOR and FONT parameter types, since the
appearance of an object (color, font style, size, etc.) can
be changed by a CPDev program during runtime.
 If enough computing resources are available, the
CPDev program can not only be used to handle the
display and panel elements (such as key buttons, switches,
touch panel) but also to perform real-time control func-
tions. For example, the runtime components (CPDev
virtual machine with CPVis graphics runtime) can be
used on a PLC/PAC controller with integrated HMI pan-
el, thus both control and visualization are performed on
the same device.

6.�Summary
Including a graphical operator interface is nowadays
an important part of the design of control and monitoring
systems. Software can be developed accordingly to IEC
61131-3 standard by using CPDev engineering environ-
ment, mostly used for PLC, PAC, softPLC controllers,
and distributed control systems applications. Some of
CPDev users from the industry insisted on an extension
that will allow to design and configure graphical operator
panels. The visualization should interact with the CPDev
virtual machine executing control software.
 The solution proposed in the paper consist of a few
cooperating software modules. The most important is the
editor of visualization displays used on a development
machine. The designer prepares the display layout and
appearance by arranging graphical objects such as bar
graphs, process values, bitmap images etc. The objects are
taken from libraries, either predefined by the tool or
application-specific.
 The target HMI device executes CPVis runtime
interpreter which processes a binary generated by the
editor. It also runs the CPDev virtual machine with
control programs. Drawing optimization reduces CPU
usage during refresh of the display, hence the proposed
solution can be applied for devices with limited resources.

References
1.� IEC 61131-3 Standard: Programmable Controllers.

Part 3. Programming Languages, IEC, 2003.

Fig. 6. Structure of CPVis binary file
Rys. 6. Struktura pliku binarnego CPVis

The firmware of the target HMI device should contain the
CPVis graphics runtime that interprets the CPV
binary. The runtime is written in C++ and can be ported
to different platforms. Until now, ARM-based HMI panel
and Windows PC have been used as targets.
 To update the display, the function drawScreen () of
the runtime should be invoked periodically. If the refresh
cycle is synchronized with the cycle of the CPDev virtual
machine, the updates will immediately reflect changes of
the CPDev variables that are bound to graphic objects’
parameters. The runtime will automatically exchange data
with the CPDev virtual machine to fix current values of
the parameters.
 Since the designer can define multiple displays in the
CPVis editor, the graphics runtime has to support switch-
ing the visualization pages. A global CPDev variable
(integer) is bound to the visualization project and repre-
sents the currently visible display. If the value of the
variable changes (for example as a result of pressing
a button), the visualization display will automatically be
changed to the one identified by the new value.
 To improve drawing speed, a detection mechanism is
used that determines whether an objects requires a re-
draw. For example, if the value of the CPDev variable
bound to the object have not changed since the last call of

Fig. 6. Structure of CPVis binary file
Rys. 6. Struktura pliku binarnego CPVis

Pomiary Automatyka Robotyka nr 2/2013 431

2.� Jamro M., Graphics editors in CPDev environment,
“Journal of Theoretical and Applied Computer
Science”, Vol. 6, No. 1, 2012, 13–24.

3.� Jamro M., Rzońca D., Sadolewski J., Stec A., Świder
Z., Trybus B., Trybus L., Extension of CPDev
engineering environment for control system pro-
gramming (in Polish), [in:] Trybus L, Samolej S.
(ed.), “Projektowanie, Analiza i Implementacja
Systemów Czasu Rzeczywistego”, WKŁ, Warszawa
2011, 151–162.

4.� Jamro M., Rzońca D., Sadolewski J., Stec A., Świder
Z., Trybus B., Trybus L., Running a distributed
control and measurement system (in Polish), [in:]
Malinowski K., Dindorf R. (ed.), „Postępy automaty-
ki i robotyki”, Part 1, Vol. 16, Komitet
Automatyki i Robotyki Polskiej Akademii Nauk,
Wydawnictwo Politechniki Świętokrzyskiej, Kielce
2011, 168–181.

5.� Jamro M., Rzońca D., Sadolewski J., Stec A., Świder
Z., Trybus B., Trybus L., Enhancements of CPDev
engineering environment for programming
Mega-Guard ship control system (in Polish), “Napędy
i sterowanie”, 6/2012, 98–103.

6.� Jamro M., Trybus B., Executing and testing of
programs written in IEC 61131-3 languages (in
Polish), Konferencja Systemy Czasu Rzeczywistego
2012, Kraków, 10-13.09.2012.

7.� Nachreiner F., Nickel P., Meyer I., Human factors in
process control systems: The design of human-
machine interfaces, “Safety Science”, Vol. 44, Iss. 1,
2005, 5–26.

8.� [http://www.praxis-automation.nl] – PRAXIS
Automation Technology 2012.

9.� [http://www.lumel.com.pl/en/] – Lumel S.A., 2012.
10.� Trybus B., Development and Implementation of IEC

61131-3 Virtual Machine, “Theoretical and Applied
Informatics”, Vol. 23, No. 1, 2011, 21–35.

11.� Wittenberg C., A pictorial human-computer interface
concept for supervisory control, “Control Engineering
Practice”, Vol. 12, Iss. 7, 2004, 865–878.

12.� Zhang P., Human-machine interfaces, “Advanced
Industrial Control Technology”, Oxford, 2010,
527–555.

Konfigurowalny interfejs operatorski
w środowisku CPDev

Streszczenie: W artykule przedstawiono rozszerzenie środowiska
programistycznego CPDev o możliwość tworzenia graficznych
interfejsów operatorskich. Rozszerzenie obejmuje narzędzia pro-
jektowe oraz oprogramowanie uruchomieniowe (runtime). Projek-
tant interfejsu używa edytora CPVis do skomponowania ekranów
wizualizacyjnych wybierając z bibliotek obiekty graficzne reprezen-
tujące kontrolki. Na docelowym urządzeniu HMI uruchamiany jest
moduł CPVis runtime, którego zadaniem jest interpretowanie
danych wizualizacyjnych. Odświeżenie obiektów na ekranie
graficznym odbywa się na podstawie informacji z maszyny wirtual-
nej CPDev, która dostarcza aktualne wartości zmiennych.

Słowa kluczowe: panel operatorski, HMI, systemy sterowania,
wizualizacja

Marcin Jamro, MSc
Research assistant in the Department
of Computer and Control Engineering
at Rzeszow University of Technology.
He received his MSc degree at
Rzeszow University of Technology in
2012. His research focuses on software
engineering on real-time systems.
e-mail: mjamro@kia.prz.edu.pl

Bartosz Trybus, PhD
Assistant professor in the Department
of Computer and Control Engineering
at Rzeszow University of Technology.
He graduated from Faculty of Electrical
Engineering, Automatics, Informatics
and Electronics, AGH – University of
Science and Technology in Cracow,
Poland. He received his PhD degree in
Computer Science in 2004. His main research concern real-time
systems and runtime environments for control software.
e-mail: btrybus@kia.prz.edu.pl

