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1. Introduction

Deep Learning (DL), as a subset of Machine Learning, has 
revolutionized many tasks in recent years, ranging from data 
analytics, natural language processing, image classification, 
video processing to speech recognition, recommender systems, 
etc. These DL models learn from the data during the training 
phase and make output predictions during the inference phase. 
In cases such as image classification, DNN algorithms have 
surpassed human-level accuracy. This and many other similar 
breakthroughs in deep learning have motivated researchers to 
explore deep learning in safety-critical applications, i.e., auto-
motive, space, defense, drones, industry, and health.

DNN models will eventually be deployed on the hardware 
(ASICs, FPGAs). There are two significant challenges at hand 
in deploying these models on hardware. a) First is the resource-
-intensive nature of running deep learning models on the har-
dware. Deep Learning models are getting bigger and bigger to 
solve more complex problems. The training phase of the model 
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generally happens on the cloud or powerful machines. During 
the inference phase, DNN models are deployed on the target 
hardware. The target hardware should be able to process a mas-
sive amount of data, i.e., roughly 4 TB in case of a self-driving 
car scenario. b) The second challenge comes in the form of the 
reliability of the hardware on which these models are deployed. 
The reliability analysis of the DNNs is extremely important 
for the reason that, during the inference phase, a DNN model 
needs to take essential and critical decisions. e.g., apply brakes 
if a pedestrian is detected in front of the car.

To fulfill our high-performance needs, over the years, we have 
observed the trend of transistor size shrinking to the Very Deep 
Sub-Micron (VDSM) level. On the one hand, this scaling has 
increased the computing performance and helped move the DNN 
inference processing from the cloud to the edge. On the other 
hand, transistor scaling leads to increased sensibility to transient 
faults due to lower threshold voltages and tighter noise margins 
[42]. Previously, this problem was relevant to the hostile environ-
ments, i.e., space, but now due to transistors scaling to VDSM 
level, safety-critical applications at the ground level are also 
prone to transient faults [8]. Most of the studies are based on 
single-bit errors. Due to the technology scaling, multi-bit errors 
are also on the rise [30]. Thus, for a reliable DNN inference on 
edge, a thoroughly verified fault-tolerant hardware is required.

In this survey, we have investigated state-of-the-art fault-
tolerant methodologies for characterizing and improving the 
resilience of DNN algorithms processing on edge. Figure 1 pro-
vides an overview of the study. Starting from section 2, we have 
discussed the impact of faults in integrated circuits. This section 
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includes the discussion related to the importance and classifica-
tions of fault models. Additionally, there is a discussion around 
the impact of fault in ASICs and FPGAs. Understanding the 
difference between these two hardware platforms is essential 
because a fault impact in ASICs and FPGAs can be different. 
Section 3 has shed some light on the deep neural networks 
design cycle and taxonomy. A discussion about MLPs, CNNs, 
and SNNs is also part of the section. In section 4 and 5, we 
have extended the discussion towards the fault resiliency of the 
deep neural networks and various fault-tolerant methodologies. 
There are so many other factors that can affect the reliability of 
the deep learning models. i.e., network architecture, layer type, 
data type, bit position, pruning, quantization, and depth of the 
model. Therefore, it is necessary to analyze the DNNs from dif-
ferent perspectives. Section 6 concludes this survey.

2. Impact of Faults in Integrated Circuits

2.1. Fault Models
It is not easy to identify all the potential types of faults which 
can occur in an electronic circuit. To evaluate a design against 
faults, faults are assumed to behave according to some fault 
model [14]. A fault model attempts to describe the effect of 
the fault that can occur. With the help of the fault model, the 
design engineers can efficiently predict the consequences of this 
particular fault.

Electronic chips are becoming increasingly complex. Compu-
tation demands are increasing day by day increase because of 
the rise in AI workloads. These modern highperformance chips 
consist of billions of transistors. The physical defects can be of 
different types. It is very extremely difficult to investigate all 
possible faults. The advantages of fault models are: a) It helps 
analyze the circuit behavior under a given fault model. b) Dra-
stically reduces the number of faults to be considered. c) Fault 
Coverage of design. d) It enables the designer to find the root 
cause of the failure of a design. e) With fault simulations, it 
helps generate the test metrics, which helps in the reliability 
evaluation of the design. Some of the most commonly used fault 
models are discussed below.

Stuck-at (SA) 0/1: The stuck-at fault model is one of the 
most common fault models used for the reliability analysis of 
a VLSI design. In this fault model, if a circuit line is perma-
nently stuck at ’logic low’, it will be called Stuckat-0, and if it 
is permanently stuck at ’logic high’, it will be termed Stuck-at-

-one. These faults are permanent in nature and are caused by 
post-manufacturing defects and transistor aging [41].

Single Event Transient (SET): The phenomenon of the 
Single Event Transient (SET) occurs when a high-energy particle 
strikes on a combinational circuit, it causes a transient voltage 
disturbance due to charge deposition. If the energy of the par-
ticle crosses a certain threshold, the end effect of it is a Single 
Event Transient (Glitch) in the combination circuit. SETs can 
occur in both ASICs and FPGAs. These transient faults are 
temporary and are also called soft errors. In [13] was investiga-
ted thet probability of SETs becoming an SEU. Generally, the 
analysis of SETs is very complex in large designs, which are com-
posed of many paths. Techniques such as Timing Analysis can 
be used to investigate the SETs in large and complex designs.

Single Event Upset (SEU): We have discussed above the 
cause of transient faults. If the same transient fault can propa-
gate to a storage element and gets latched, it becomes a Single 
Event Upset (SEU). Storage elements can be system memory, 
registers, or configuration memory cells in FPGAs. Based on the 
number of upsets that occur in a circuit, SEUs can lead to first, 
second, and third-order effects. A single SEU affecting a sin-
gle bit is often classified as a first-order effect. When a charged 
particle affects multiple bits, it is considered as Multi-bit upset 
(MBU) and leads to second and third-order effects. A secondor-
der effect happens if an SEU simultaneously strikes two adja-
cent sensitive nodes located in two different memory cells. And 
when MBU occurs as a result of a single particle striking two 
adjacent sensitive nodes located in the same memory cell, it is 
considered a third-order effect.

Fig. 1. Organization of this survey
Rys. 1. Organizacja niniejszego przeglądu

Fig. 2. Left: Channel stuck-at, Right: Pixel stuck-at [43]
Rys. 2. Po lewej: zablokowany kanał, po prawej: Piksel zablokowany

Sometimes fault model depends on the targeted application 
and how that application is implemented on the hardware. For 
instance, in [43] has proposed two fault models (Fig. 2) for the 
deep convolutional neural implementation on the FPGAs. a) 
Pixel stuck-at, which means the stuck-at fault in a single pixel 
of the CNN feature maps. b) Channel stuck-at, which means 
the whole channel in CNN feature maps is faulty.

2.2. Impact of a Fault in ASICs and FPGAs
FPGAs are becoming a valuable candidates for AI applications 
because of their high density, high performance, shorter time 
to market, and re-programmability. On the other hand, ASICs, 
which stand for Application-Specific Integrated Circuits, are 
designed for a specific application, and their functionality rema-
ins the same throughout their operating life.

In ASICs, the logic is permanently mapped to gates and flip-
-flops in silicon. Whereas in FPGAs, logic is mapped on the con-
figurable logic blocks (CLBs). CLBs consist of Lookup Tables 
(LUTs), flip-flops (FFs), and routing resources (switch matrix, 
multiplexors, and connection segments). Most FPGAs also have 
dedicated memory blocks as hard macros called block RAMs 
(BRAMs). Unlike ASICs, FPGAs are programmable, and their 
functionality can be changed by uploading a new bitstream. The 
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bitstream contains configuration frames, which configure all the 
programmable and memory elements in the FPGA fabric. All 
these bits are potentially sensitive to radiation effects; therefore, 
the design should be thoroughly investigated against various 
fault models.

In [21] has investigated the effect of radiation in ASICs and 
FPGAs. Figure 3 has illustrated that effect of radiation in the 
combinational and sequential logic of ASICs is transient. Based 
on the pulse duration of the SETs (Glitch), transient faults in 
the combinational logic of the design may or may not be lat-
ched by a storage cell. On the other hand, faults in the sequen-
tial logic (SEUs) remain in the storage cell until the next load.

In the case of SRAM-based FPGAs, the user’s logic is mapped 
on the CLBs. CLBs consist of LUTs, FFs, and routing resour-
ces. An SEU in the LUT memory cell modifies the implemented 
combinational logic and results in undesired program behavior. 
The end effect of SEUs in the CLBs is permanent, and it can 
only be mitigated by re-programming the bitstream. Similarly, 
an SEU in the routing matrix will lead to connecting/discon-
necting a connection between CLBs. This can also be mitiga-
ted using bitstream reconfiguration. An SEU in block RAMs 
also has a permanent effect; therefore, block RAMs should be 
protected against faults using different error-detecting and cor-
recting techniques. In a scenario, when an SEU occurs in the 
sequential logic synthesized in the FPGA, it will have a tempo-
rary effect, as the faulty value will be overwritten in the next 
load of the flip flop [21].

As we have discussed, the impact of the fault is sometimes dif-
ferent in ASICs and FPGAs for the reason that FPGA fabric is 
a bit different compared to ASICs. Several fault-tolerant metho-
dologies, which have been proposed for ASICs, may not be direc-
tly applicable to FPGAs. Therefore, it is extremely important 
that fault modeling and fault analysis of a design should be done 
based on the targeted hardware platform. A clear understanding 
of the targeted hardware platform can also help in the design 
and development of relevant fault mitigation methodologies.

3. Deep Neural Networks

Artificial Intelligence (AI) has created an enormous impact on 
all aspects of life. AI, as described in [12], “is a system’s ability 
to interpret external data correctly, to learn from such data, 
and to use those learnings to achieve specific goals and tasks 
through flexible adaptation.” Machine Learning is a subset 
of AI, which deals with computer algorithms that can train 
a model to perform tasks and take decisions without explici-

tly programming to do so. Deep Learning comes under the 
umbrella of Machine Learning (ML), and it uses Artificial 
Neural Networks (ANNs), whose architecture is inspired by 
the structure and function of the brain. ANNs have recently 
become the standard tool for solving a variety of prediction 
and classification problems. They generally consist of an input 
layer, an output layer, and hidden layers. In past years, ANNs 
have grown in complexity, comprising of many hidden layers, 
and are able to solve many complex problems in computer 
vision, natural language processing, and medical science, etc. 
ANNs are also commonly known as Deep Neural Networks. 
The term ’Deep’ refers to the use of multiple layers in the 
ANNs. Each layer consists of neurons that connect to other 
neurons in the corresponding layers via an activation function. 
Each neuron has its associated parameters, i.e., weight, bias, 
and/or filter coefficient. Authors of [23, 40] have investigated 
the ANNs in detail.

3.1. Deep Neural network design cycle
The design cycle of DNNs consists of two major stages: Training 
and Inference.

Training: DNNs model should be trained before its deploy-
ment on the targeted device. Training is a computeintensive 
process, generally carried out by high-performance computing 
machines, i.e., cloud servers, which involves the use of a training 
data set to find suitable values for the network parameters. After 
the training is done, the performance of the model is tested aga-
inst a test data set.

Inference: After the model is trained and tested, it is ready 
to be deployed. At this stage, the NN performs classification/
decision-making using actual, previously unseen data (i.e., in 
real-time). Target hardware for inference can vary based on 
the application. For applications such are movie recommenda-
tions on Netflix or social media Ads, inference happens on the 
cloud. In comparison, inference happens on edge in the case of 
Cyber-Physical Systems (e.g., autonomous vehicles and weara-
ble healthcare devices).

3.2. Neural Network Taxonomy
Since their advent, NNs have progressively improved. The first 
generation was single-layer perceptron or multi-layer perceptron 
(MLP). MLP is also called a feedforward neural network for the 
reason that nodes in the network do not form a cycle. MLP can 
generally perform classification and regression problems.

The second-generation (Fig. 4) of the neural networks con-
sists of convolutional neural networks (CNNs), RNNs, capsule 
networks (CapsNets) [16], and generative adversarial networks 

Fig. 3. Impact of a fault in ASIC and FPGA architecture [21]
Rys. 3. Wpływ błędu w architekturze ASIC i FPGA

Fig. 4. 1st, 2nd and 3rd neural networks generations
Rys. 4. Pierwsza, druga i trzecia generacja sieci neuronowych
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(GANs) [11]. CNNs have proven so effective in solving an image 
classification problem. CNNs have the ability to develop an 
internal representation of a two-dimensional image. This allows 
the CNN model to learn the position and scale-invariant struc-
tures in the image data, which is very important when working 
with images. Various CNN models have been proposed, namely, 
VGG16 [38], Alexnet [22], Resnet [15], etc., which have shown 
state-of-the-art performance against the ImageNet dataset [35].

The third generation (Fig. 4) of neural networks makes use 
of spiking NNs (SNNs) [29] in an attempt to emulate human 
brain-like functioning. The major difference between a traditio-
nal ANN and SNN is how the information propagates through 
the network. Therefore, instead of continuously changing in time 
values used in artificial neural networks, spiking NNs works with 
discrete events that occur at specific points of time. Spiking NNs 
receives a series of spikes as input and produces a series of spikes 
as the output, also referred to as spike trains [29]. The emphasis 
of this survey is on MLPs and CNNs.

4.	Factors Affecting the Resiliency 
of Deep Neural Networks

We have discussed in the section 2 how the hardware is vulne-
rable and leads to incorrect results in the presence of faults. In 
the section 3, we have briefly explained the DNNs, their design 
cycle, and taxonomy. Eventually, the DNNs will be implemen-
ted on hardware. Therefore it is essential to analyze the neural 
networks under the influence of hardware faults. Deep Neural 
Networks are said to have some inherent resiliency. However, 
faults can still influence the accuracy of the DNN model, which 
can further lead to incorrect output classification or prediction. 
Therefore, for safety-critical applications, it becomes vital to 
do a thorough design analysis. 

The term resiliency in the DNNs refers to the ability to main-
tain a given accuracy even in the presence of errors. There 
are many factors that can affect the resiliency of deep neural 
networks. i.e., Network Architecture, Layer Type, Data Type, 
the bit position of weights, pruning, quantization, etc. Authors 
of [6, 24] have shown that deeper networks are more resilient, 

Fig. 5. Impact of a fault in floating point and fixed point number [39]
Rys. 5. Wpływ błędu na liczbę zmiennoprzecinkową i stałoprzecinkową

and the use of batch normalization layers in the neural network 
architecture helps in generalizing and improving the resiliency of 
the network model. In [34] was figured that, that the impact of 
fault is more when it happens at the back of the network (i.e., 
in the last layers), whereas faults effects tend to be mitigated 
or neutralized if happening in the initial layers of the network 
( i.e., the first layer). In [6, 27] was demonstrated that pruning 
and quantization also assist in increasing the resiliency of the 
network model.

Datatype also has an enormous role to play in the resiliency 
of the DNN model. As shown in Fig. 5, we analyze how a fault 
can impact a DNN with an IEEE-754 floatingpoint 32 (FP32) 
data type versus a 4-bit Fixed Point (FxP) data type. Accor-
ding to the IEEE-754 standard, the FP32 data type consists of 
8 exponent bits, 23 fraction bits 1 sign bit. On the other hand, 
the 4-bit FxP data type consists of 1 sign bit and 3 fraction 
bits. As discussed in the previous section, the DNN model con-
sists of thousands of parameters. Consider 0.25 as one of the 
parameters (weight) of the DNN model (Fig. 5). If the weight 
value is represented as an FP32 number, a fault in the most 
significant exponent bit of the FP32 number can substantially 
change the value of the DNN’s parameter either to a very high 
value or to a very low value. If not masked, this fault could pro-
pagate through the DNN network and drastically decrease the 
accuracy. The impact of a fault also causes a deviation in FxP 
numbers, which leads to a decrease in accuracy, but the overall 
impact would be less due to the less dynamic range of the FxP 
numbers [39]. Therefore it is crucial to define a data type and 
bit-width, which can fulfill the requirement of accuracy and 
reliability, and hardware resources.

Another aspect that impacts the reliability of the DNN 
model is the hardware architecture implemented on the tar-
geted hardware, e.g., ASICs, FPGAs. The faults can occur in 
the datapath, i.e., latches, flip flops, etc., and also in the data 
buffers. Faults in both locations propagate differently. Faults 
in the data path will be read once and can get over-written by 
the correct value in the next load. Whereas faults in the buf-
fers may be read multiple Times because of the reuse (reuse of 
weights, input feature maps, output feature maps, etc.), and 
hence the same faulty value can be spread to multiple locations 
very quickly [24].

5. Fault Tolerant Deep Neural Network 
Methodologies

In this section, we will explore several state-of-the-art. fault-
-tolerant methodologies which were proposed by the correspon-
ding research community.

Fig. 6. Pruning impact on the 
weights distribution of the 
CNN model
Rys. 6. Wpływ przycinania na 
rozkład wag modelu CNN
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5.1. Model Compression
The challenge is that running deep learning models is a reso-
urce-intensive process and deploying these models, with millions 
of parameters, on edge devices is a growing concern. There are 
DNN models from a few thousand parameters to more than 
a billion parameters. Deploying these big models on the har-
dware is very challenging, especially in safety-critical applica-
tions. Due to these challenges, research in the area of model 
compression has been very actively pursued over the last few 
years. The goal of model compression is to reduce the model 
size so that it can be deployed on low power and resource con-
straint devices without a significant accuracy drop. Some model 
compression methods which has been proposed in recent years 
are parameter pruning, quantization, knowledge distillation, 
low-rank factorization, transferred/compact convolutional fil-
ters, etc. In this study, we focus on the two popular two model 
compression methods: a) Pruning b) Quantization. Pruning and 
quantization were not particularly proposed as a method to 
improve resiliency. It is exciting to study them for two reasons. 
a) Pruning and quantization affect the resiliency of the DNNs. 
b) Both methods have become the de-facto standard during 
the DNN deployment on the hardware; therefore, it is crucial 
to study it from the fault tolerance perspective.

Pruning: Many experiments have concluded that there are 
many parameters in the DNNs which are not important, and it 
is still possible to achieve the desired performance in the absence 
of these parameters. Thus, pruning is a way to remove unne-
cessary parameters, thereby making the deep neural networks 
sparsed. Figure 6 illustrates the impact of the magnitude-based 
weight pruning method, which gradually zeroes out weights of 
the model during the training process to achieve model spar-
sity. This sparsity in the neural network parameters due to the 
pruning has two advantages. a) It reduces the mode size, which 
further helps in reducing the computational complexity, leading 
to faster inference. b) It improves the resiliency of the DNN 
model [6]. Pruning is further classified into channel pruning, 
filter pruning, connection pruning, and layer pruning. Different 
pruning strategies can also have a different resiliency impact on 
neural networks.

Quantization: A typical deep neural network consists of 
weights in 32-bit floating-point values. FP32 computations requ-
ire either a floating-point unit or additional hardware resources 
to perform dynamic range shifts computation. This will lead 
to an increase in hardware resources and latency, which gains 
makes it challenging to deploy these networks in hardware devi-
ces. DNN quantization comes to the rescue in this situation. 
DNN quantization refers to a method of approximating a neu-
ral network’s parameters and activations to low bit-width fixed 
point (FxP) numbers as shown in Fig. 7. Because, in many cases, 
the dynamic range that the FP32 provides is not needed. FxP 
numbers are generally hardware-friendly. FxP computations are 
faster than FP32, and it also costs less area overhead as com-
pared to FP32 Computations. Along with the benefits such as 
(a) lower model size (b) lower inference latency, DNN Quantiza-
tion also results in improving the resiliency of the DNN Model.

Goldstein have studied the impact of SEUs in three different 
CNNs models with different sparsity [9]. They have concluded 
that Pruning and Quantization combined can increase the resi-
liency by up to 108.7 times. Other authors have explored further 
the impact of SEUs in homogenous and heterogeneous quanti-
zed models and concluded that, in general, quantization helps 
in improving the resiliency of the DNN model [29]. Resiliency 
between the models can also vary based on different levels of 
quantization and more vigorous quantization could sacrifice resi-
liency and accuracy. In [36] have aggressively quantized the DNN 
models (VGG16 and Lenet) to as low as the binary values and 
have reported an increase in the fault resiliency of DNN models 
(VGG16 and Lenet) by 10000x.

5.2. Clipped Activations
We have examined in section 4 Fig. 5, how a fault can impact 
a DNN with an FP32 data type versus a 4-bit FxP data type 
and illustrated that fault in the MSB of the exponent bit can 
saturate the DNN model and lead to undesirable results. In [18] 
was observed a similar impact of fault on the FP32 as illustrated 
in Fig. 5 and to solve the problem of saturation the technique 
of ’The Clipped Activations Function’ has been proposed. By 
default, the output of the activation function is unbounded; the-
refore, in the presence of a fault, the faulty output of extremely 
high magnitude can propagate through the network. They have 
replaced the unbounded activations functions with a bounded 
activations function to restrict the output of the activation func-
tion to a specific threshold value. With this methodology, they 
have achieved 68.92 % improvement in accuracy compared to 
the baseline VGG-16 model at 1 × 10−2 fault rate.

Similarly, in [2, 7] have also explored the similar phenome-
non of restricting the output of neurons to make them more 
resilient. Restricting the output of the neurons results in redu-
ced deviations. Neural networks have the capability to tolerate 
small deviations due to their inherent resiliency.

5.3. FAT: Fault Aware Training
Machine Learning deals with computer algorithms that have 
the ability to learn to perform tasks and take decisions without 
explicitly programming to do so. The process of learning is called 
’Training’. Authors in [43] have leveraged this idea and proposed 
Fault Aware Training (FAT). In other words, Fault Injection can 
be performed during the training phase. They treat resiliency as 
a learning problem, and they want the neural network to learn 

Fig. 7. Quantization impact on weights distribution [29]
Rys. 7. Wpływ kwantyzacji na rozkład wag
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the impact of faults during the training phase. Fault Injection 
layers have been added inside the DNN model (Fig. 8). Faults 
are injected into the neural network during the training phase 
with a probability in the range of 1–10 %.

There is the concept of using Dropout layers in the training of 
the neural networks to reduce overfitting and make the behavior 
of the model more generic. The fault injection layer during FAT 
behaves somewhat similarly to Dropout layers. FAT supports 
injecting many possible fault values into the DNNs, while dro-
pout only inserts zeros during the training. The detailed analysis 
of two different fault models under the influence of faults with 
different probabilities is discussed in the paper.

5.4. FAP and FAP+T
In [44] was considered a DNN accelerator based on a systolic 
array, i.e., Google Tensor Processing Unit (TPU), and proposed 
two fault-tolerant methodologies. a) Fault Aware Pruning (FAP) 
b) Fault Aware Pruning + Retraining (FAP+T). They have con-
sidered permanent faults, which occurred in the integrated cir-
cuits due to process variations or manufacturing defects. After 
detailed gate-level simulations of stuck-at faults, they have conc-
luded that the accuracy of the TPU drops drastically even if there 
are just four faulty MAC units among a total of 64K MAC units.

FAP: Pruning is a method to remove connections that are 
not important. It was leveraged this idea and used it to prune 
the fault MACs causing the accuracy degradation [44]. Using 
standard post-fabrication analysis, they find the location of the 
faulty MACs, and with some additional bypass circuity, they can 
bypass the faulty MACs. The area overhead of the new systolic 
array architecture due to the new bypass path is about 9 %.

FAP+T: With FAP, it is only possible to bypass the faulty 
MACs. An additional re-training step is added to recover the 
accuracy loss because of the missing MAC units. In this step, 
the model learns to adapt to the change caused due to missing 
MAC units and tries to attain its baseline classification accu-
racy. Authors have claimed that, even with 50 % faulty MAC 
units, FAP+T can provide close to baseline accuracy. Post-
-fabrication analysis of every chip can be different; therefore, 
FAP and FAP+T need to be performed for all the chips with 
manufacturing defects.

5.5. Selective Hardening
Hardware redundancy-based methods (i.e., DMR and TMR) 
generally involve full hardware replication. Triple Modular 
Redundancy (TMR) has been used in the industry for many 
decades. Triplication of a design does provide the required resi-
liency to the safety-critical system but at the cost of increased 
power consumption and a considerable area overhead of 200 %. 
There are different attractive alternatives to full TMR for a wide 
variety of safety-critical applications. Typically, not all safety-
-critical applications focus on very high resiliency requirements. 

Further, not all the components in the design are essential. We 
can focus on hardening only the essential parts of the design, in 
other words, only triplicating the sensitive part of the design. 
This method is commonly known as Selective Hardening. Selec-
tive hardening can be applied on various abstraction levels in the 
design. In neural networks, it can be applied in the layer-level 
[20, 26], neurons level (Fully Connected layers) or channel-level 
(CNN Layers) [5] and also at the Processing Element (PEs) level.

Authors [5, 26, 1] have applied selective hardening techniques 
in the CNNs and have made a similar argument that triplicating 
the whole DNN model would cost a 200 % increase in the area 
overhead. They have proposed Selective layer and Channel Tri-
plication, respectively, in a two-step process. a) Identification of 
the vulnerable CNN channels, which causes a decrease in accu-
racy in the presence of Faults b) triplication of the identified 
CNN layers/channels. They have used different network archi-
tectures of various sizes for their analysis. In [26] was performed 
fault injection using the FPGA accelerated fault injection and 
neutron flux radiation setup. Selective layer hardening resulted 
in the masking of 40 % faults with 8 % additional area overhead. 
While in the study [5], they can reduce the area overhead from 
200 % to 173 % for a worst-case accuracy drop of 0.5 %. For 
a worst-case accuracy drop of 1 % and 2 %, they have reported 
a 200 % to 129.7 % and 49.87 % reduction in area overhead, 
respectively. This also validates the argument that for more 
strict accuracy requirements, more hardware area will be needed 
and vice versa. Hence, depending upon the application requ-
irements, selective hardening of the design can be performed.

On hardware, neural networks are mapped to multiple proces-
sing elements. These processing elements perform multiply and 
accumulate operations. Based on the hardware architecture of 
the DNN, a single neuron, singlechannel, single layer, or multi-
ple layers can be mapped to these processing elements. A fully 
parallelized architecture of a neural network in which each neu-
ron is mapped to one PE is very unlikely for bigger networks. 
Therefore, in most cases, these PEs are being shared between 
different neurons, channels, or layers. Therefore, even one faulty 
PE can cause a huge accuracy degradation. In [5] was investiga-
ted that the more PEs are being shared, the higher it will lead 
to a decrease in accuracy in case of a fault. Therefore, it would 
be interesting to explore selective hardening at the PE level.

5.6. Ensemble Learning Based Robustness
Ensemble learning methods were initially proposed to reduce 
overfitting or better generalize the results compared to the 
results from a single model instance. Multiple ML models are 
trained on the same dataset during the training phase. The 
output of each model is processed to estimate the best outcome 
during the inference phase. One way of selecting the best out-
come is to take an average of predictions of individual models. 
In [33] was used an ensemble learning-based approach to incre-

Fig. 8. Fault injection layer in 
DNN architecture [43]
Rys. 8.  Warstwa wstrzykiwania 
błędów w architekturze DNN
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ase the robustness of the CNN model. The larger the number 
of CNN models in an ensemble, the greater will be the har-
dware resource utilization and power consumption. The author 
has used quantization and pruning to compress the model 1/N 
times its initial size. The hardware resources they save during 
the model compression are utilized to create an ensemble of 
N CNN models (Fig. 9). In contrast to traditional ensemble 
methods, their proposed approach of compressed ensembles can 
be deployed on constrained devices with no energy or memory 
overhead. The output of the CNN ensemble is averaged to com-
pute the final predictions. Their target hardware is an edge 
device comprising of processor connected to main memory via 
a 32-bit bus. They have considered faults in memory that hap-
pen due to sub-nominal operating conditions.

5.7. Knowledge Distillation Based Redundancy
In [25] was developed an approach that uses knowledge distilla-
tion-based redundancy to detect faults. Knowledge distillation, 
proposed in [17], is a training-based solution for reducing the 
model’s size, in which the knowledge from the teacher model is 
transferred to a simpler student model. In this way, a smaller 
student model can approximate the results of the bigger teacher 
model. The teacher model is generally a complex ML/DL model 
or an ensemble of models. In contrast, a student model is usu-
ally a single smaller model that is much more straightforward to 
deploy without substantial loss in performance. Their approach 
makes use of two DNN models, i.e., task DNN (teacher model) 
and checker DNN (student model). Instead of using an expen-
sive DMRbased solution, have reduced the size of the checker 
DNN model by utilizing knowledge distillation and architecture 
compression approach [25]. Both of these models process each 
input sample (see Fig. 10). A comparator block compares the 

outcome of both models. If the results are consistent, they are 
considered for further processing; otherwise, re-computation 
on the task DNN is performer for potential recovery from the 
fault. They have performer the experiments from the security 
perspective and considered the fault model in which the attac-
ker is trying to compromise the accuracy of a DNN system by 
maliciously injecting faults. Experimental results show that at 
the cost of 10 % overhead, their approach can reduce 90 % of 
the risks. This approach can be considered and studied from the 
reliability perspective as well.

5.8. ABFT: Algorithm-based Fault Tolerance
Matrix multiplications are the fundamental arithmetic opera-
tion in neural networks. In order to make this matrix multipli-
cations fault-tolerant, Algorithm-based fault tolerance (ABFT) 
was proposed in [19]. ABFT cannot only detect the errors but 
also can correct the errors. ABFT is a very attractive solution 
to make the neural network fault-tolerant, and it costs low area 
overhead as compared to traditional TMR methods. The core 
idea behind ABFT can be thought of as an extension of ECC 
to numeric structures like vectors and matrices. In [45, 37] was 
applied the ABFT approach to CNN models. Zhao et al. (2020) 
have considered some of the widely used CNN models, i.e., 
AlexNet, VGG-19, ResNet-18, and YOLOv2, and demonstra-
ted the results as per runtime overhead metric. Their ABFT 
approach can handle soft errors with a very small runtime over-
head of 4 % to 8 %. In [37] was implemented CNNs on three 
GPU architectures, i.e., K40, Tegra X1, Titan X. Their ABFT 
approach is able to detect and correct 50 % to 60 % of radia-
tion-induced corruptions.

Similar to ABFT, was proposed a lowoverhead error detec-
tion technique for matrix multiplications [28]. I.e., Light ABFT. 

Fig. 9. (a) Traditional ensemble 
of AI models (b) Ensemble of 
compressed AI models
Rys. 9. (a) Tradycyjny 
zestaw modeli AI (b) Zestaw 
skompresowanych modeli AI

Fig. 10. Knowledge distillation 
based redundancy
Rys. 10. Redundancja oparta na 
destylacji wiedzy
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Unlike ABFT, which can perform error detection and correc-
tion, the light ABFT approach can only detect errors. Author 
have targeted FPGAs, and he argues that as soon as the error is 
detected with Light ABFT, it can be corrected using fast partial 
reconfiguration of the FPGA bitstream.

Authors of [31] have made use of the linearity property of the 
fully connected layers and convolutions layers and have proposed 
a low overheard error detection method, called as Sanity-Check. 
The ABFT also inspires this approach, and in this approach, 
with the addition of two neurons (namely sanity-neuron and 
check-neuron), they can detect whether the layer’s output is 
erroneous. The sanity-neuron acts as an additive inverse of the 
rest of the neuron in the layer, while the check-neuron sums 
the output to confirm if the result is zero or non-zero. A similar 
approach is applied in the case of convolution layers.

5.9. Arithmetic Error Codes
Arithmetic error codes, which comes under the umbrella of 
ECCs, are an exciting way to detect and correct errors, as they 
are conserved during most arithmetic operation [32]. They have 
been used in various safety-critical applications to increase the 
reliability of the systems. In [10] authors have used a specific 
class of arithmetic codes, known as AN-Codes, in state-of-the-art 
DNN accelerators. They have exhibited that they can achieve 
99 % fault coverage with a 5-bit arithmetic code with minimal 
area and power overhead.

5.10. Inter Frame Spatio-Temporal Correlation
In [4] was proposed a very different and unique approach to 
detect errors in CNNs. The general functionality of CNNs is 
that it takes an image as input and output the predictions. Each 
image is a frame, and many frames are captured and processed 
in one second. CNNs treat each frame independently and predict 
the output. Most of the time, these input frames are correlated, 
and hence the output predictions are also similar. Therefore, not 
only do the input frames correlate with each other but also the 
output predictions. They use both the input and output correla-
tion information to detect errors in a frame as it is processed. If 
there is a difference in the correlation of output predictions, then 
there are two possibilities. a) The input frame is also different. 
In this case, the change in the output predictions is justified 
by the change in frames. b) Erroneous output prediction. Sub-
sequent frames are identical, and hence the output predictions 
should also be identical. They have performed error analysis on 
two CNNS, i.e., YOLO and Faster R-CNN trained on Caltech 
Pedestrian Dataset [3]. They are able to detect 80 % of errors 
while keeping the area overhead low.

6. Conclusion

Safety-critical applications require fault-free execution of 
critical tasks. The increased use of DNNs in safety-critical 
applications demands a thorough understanding of targeted 
hardware (ASICs, FPGAs) and DNNs’ characteristics. Thus, 
this survey paper has discussed and differentiated between 
ASICs and FPGA fault models. The essential concept of three 
generations of neural networks is explained. We extended this 
discussion and examined factors that impact the resiliency 
of neural networks and several state-of-the-art fault mitiga-
tion methodologies.

Improving the reliability of the DL accelerators is like ”cha-
sing a moving target”. The design of an efficient faulttolerant 
AI accelerator will involve the combined effort of researchers in 
both the AI and reliability domains. Previously, AI models have 
been treated as black boxes. Now, the increased use of AI in 
safety-critical applications, i.e., Medical, Automotive, Industries, 
Defense, Space, etc., has led researchers to work on ”Explainable 

AI”. The insights obtained from these studies will help design 
efficient faulttolerant AI accelerators.
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Streszczenie: Znaczący rozwój sztucznej inteligencji (SI) wpływa na wiele otaczających nas aplikacji, 
do tego stopnia, że SI jest obecnie coraz częściej wykorzystywana w aplikacjach o krytycznym 
znaczeniu dla bezpieczeństwa. Sztuczna inteligencja na brzegu sieci (Edge) jest rzeczywistością, co 
oznacza wykonywanie obliczeń na danych bliżej źródła danych, w przeciwieństwie do wykonywania ich 
w chmurze. Aplikacje o krytycznym znaczeniu dla bezpieczeństwa mają wysokie wymagania dotyczące 
niezawodności; dlatego ważne jest, aby modele SI działające na brzegu sieci (tj. sprzęt) spełniały 
wymagane standardy bezpieczeństwa. Z rozległej dziedziny sztucznej inteligencji, głębokie sieci 
neuronowe (DNN) są centralnym punktem tego badania, ponieważ nadal przynoszą znakomite wyniki 
w różnych zastosowaniach, tj. medycznych, motoryzacyjnych, lotniczych, obronnych itp. Tradycyjne 
techniki niezawodności implementacji w przypadku DNN nie zawsze są praktyczne, ponieważ nie 
wykorzystują unikalnych cech DNN. Co więcej, istotne jest również zrozumienie docelowego sprzętu 
brzegowego, ponieważ wpływ usterek może być różny w układach ASIC i FPGA. Dlatego też w niniejszym 
przeglądzie najpierw zbadaliśmy wpływ usterek w układach ASIC i FPGA, a następnie staramy się 
zapewnić wgląd w ostatnie postępy poczynione w kierunku DNN odpornych na błędy. Omówiliśmy kilka 
czynników, które mogą wpływać na niezawodność sieci DNN. Ponadto rozszerzyliśmy tę dyskusję, aby 
rzucić światło na wiele najnowocześniejszych technik ograniczania błędów w sieciach DNN.

Słowa kluczowe: odporność na błędy, niezawodność, układy FPGA, układy ASIC, sieci neuronowe

Przegląd metod zapewniających odporność na błędy 
dla głębokich sieci neuronowych
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