
Zezwala się na korzystanie z artykułu na warunkach
licencji Creative Commons Uznanie autorstwa 3.0

1. Introduction

Deep Learning (DL), as a subset of Machine Learning, has
revolutionized many tasks in recent years, ranging from data
analytics, natural language processing, image classification,
video processing to speech recognition, recommender systems,
etc. These DL models learn from the data during the training
phase and make output predictions during the inference phase.
In cases such as image classification, DNN algorithms have
surpassed human-level accuracy. This and many other similar
breakthroughs in deep learning have motivated researchers to
explore deep learning in safety-critical applications, i.e., auto-
motive, space, defense, drones, industry, and health.

DNN models will eventually be deployed on the hardware
(ASICs, FPGAs). There are two significant challenges at hand
in deploying these models on hardware. a) First is the resource-
-intensive nature of running deep learning models on the har-
dware. Deep Learning models are getting bigger and bigger to
solve more complex problems. The training phase of the model

Autor korespondujący:
Krzysztof Piotrowski, piotrowski@ihp-microelectronics.com

Artykuł recenzowany
nadesłany 19.02.2023 r., przyjęty do druku 16.04.2023 r.

A Survey on Fault-Tolerant Methodologies for
Deep Neural Networks
Rizwan Tariq Syed, Markus Ulbricht, Krzysztof Piotrowski, Milos Krstic
IHP – Leibniz-Institut f¨ur innovative Mikroelektronik, Frankfurt (Oder), Germany

Abstract: Asignificant rise in Artificial Intelligence (AI) has impacted many applications around
us, so much so that AI has now been increasingly used in safety-critical applications. AI at the edge
is the reality, which means performing the data computation closer to the source of the data, as
opposed to performing it on the cloud. Safety-critical applications have strict reliability requirements;
therefore, it is essential that AI models running on the edge (i.e., hardware) must fulfill the required
safety standards. In the vast field of AI, Deep Neural Networks (DNNs) are the focal point of this
survey as it has continued to produce extraordinary outcomes in various applications .i.e medical,
automotive, aerospace, defense, etc. Traditional reliability techniques for DNNs implementation are
not always practical, as they fail to exploit the unique characteristics of the DNNs. Furthermore, it
is also essential to understand the targeted edge hardware because the impact of the faults can
be different in ASICs and FPGAs. Therefore, in this survey, first, we have examined the impact of
the fault in ASICs and FPGAs, and then we seek to provide a glimpse of the recent progress made
towards the fault-tolerant DNNs. We have discussed several factors that can impact the reliability
of the DNNs. Further, we have extended this discussion to shed light on many state-of-the-art fault
mitigation techniques for DNNs.

Keywords: fault tolerance, reliability, FPGAs, ASICs, neural networks

generally happens on the cloud or powerful machines. During
the inference phase, DNN models are deployed on the target
hardware. The target hardware should be able to process a mas-
sive amount of data, i.e., roughly 4 TB in case of a self-driving
car scenario. b) The second challenge comes in the form of the
reliability of the hardware on which these models are deployed.
The reliability analysis of the DNNs is extremely important
for the reason that, during the inference phase, a DNN model
needs to take essential and critical decisions. e.g., apply brakes
if a pedestrian is detected in front of the car.

To fulfill our high-performance needs, over the years, we have
observed the trend of transistor size shrinking to the Very Deep
Sub-Micron (VDSM) level. On the one hand, this scaling has
increased the computing performance and helped move the DNN
inference processing from the cloud to the edge. On the other
hand, transistor scaling leads to increased sensibility to transient
faults due to lower threshold voltages and tighter noise margins
[42]. Previously, this problem was relevant to the hostile environ-
ments, i.e., space, but now due to transistors scaling to VDSM
level, safety-critical applications at the ground level are also
prone to transient faults [8]. Most of the studies are based on
single-bit errors. Due to the technology scaling, multi-bit errors
are also on the rise [30]. Thus, for a reliable DNN inference on
edge, a thoroughly verified fault-tolerant hardware is required.

In this survey, we have investigated state-of-the-art fault-
tolerant methodologies for characterizing and improving the
resilience of DNN algorithms processing on edge. Figure 1 pro-
vides an overview of the study. Starting from section 2, we have
discussed the impact of faults in integrated circuits. This section

89

Pomiary Automatyka Robotyka, ISSN 1427-9126, R. 27, Nr 2/2023, 89–98, DOI: 10.14313/PAR_248/89

includes the discussion related to the importance and classifica-
tions of fault models. Additionally, there is a discussion around
the impact of fault in ASICs and FPGAs. Understanding the
difference between these two hardware platforms is essential
because a fault impact in ASICs and FPGAs can be different.
Section 3 has shed some light on the deep neural networks
design cycle and taxonomy. A discussion about MLPs, CNNs,
and SNNs is also part of the section. In section 4 and 5, we
have extended the discussion towards the fault resiliency of the
deep neural networks and various fault-tolerant methodologies.
There are so many other factors that can affect the reliability of
the deep learning models. i.e., network architecture, layer type,
data type, bit position, pruning, quantization, and depth of the
model. Therefore, it is necessary to analyze the DNNs from dif-
ferent perspectives. Section 6 concludes this survey.

2. Impact of Faults in Integrated Circuits

2.1. Fault Models
It is not easy to identify all the potential types of faults which
can occur in an electronic circuit. To evaluate a design against
faults, faults are assumed to behave according to some fault
model [14]. A fault model attempts to describe the effect of
the fault that can occur. With the help of the fault model, the
design engineers can efficiently predict the consequences of this
particular fault.

Electronic chips are becoming increasingly complex. Compu-
tation demands are increasing day by day increase because of
the rise in AI workloads. These modern highperformance chips
consist of billions of transistors. The physical defects can be of
different types. It is very extremely difficult to investigate all
possible faults. The advantages of fault models are: a) It helps
analyze the circuit behavior under a given fault model. b) Dra-
stically reduces the number of faults to be considered. c) Fault
Coverage of design. d) It enables the designer to find the root
cause of the failure of a design. e) With fault simulations, it
helps generate the test metrics, which helps in the reliability
evaluation of the design. Some of the most commonly used fault
models are discussed below.

Stuck-at (SA) 0/1: The stuck-at fault model is one of the
most common fault models used for the reliability analysis of
a VLSI design. In this fault model, if a circuit line is perma-
nently stuck at ’logic low’, it will be called Stuckat-0, and if it
is permanently stuck at ’logic high’, it will be termed Stuck-at-

-one. These faults are permanent in nature and are caused by
post-manufacturing defects and transistor aging [41].

Single Event Transient (SET): The phenomenon of the
Single Event Transient (SET) occurs when a high-energy particle
strikes on a combinational circuit, it causes a transient voltage
disturbance due to charge deposition. If the energy of the par-
ticle crosses a certain threshold, the end effect of it is a Single
Event Transient (Glitch) in the combination circuit. SETs can
occur in both ASICs and FPGAs. These transient faults are
temporary and are also called soft errors. In [13] was investiga-
ted thet probability of SETs becoming an SEU. Generally, the
analysis of SETs is very complex in large designs, which are com-
posed of many paths. Techniques such as Timing Analysis can
be used to investigate the SETs in large and complex designs.

Single Event Upset (SEU): We have discussed above the
cause of transient faults. If the same transient fault can propa-
gate to a storage element and gets latched, it becomes a Single
Event Upset (SEU). Storage elements can be system memory,
registers, or configuration memory cells in FPGAs. Based on the
number of upsets that occur in a circuit, SEUs can lead to first,
second, and third-order effects. A single SEU affecting a sin-
gle bit is often classified as a first-order effect. When a charged
particle affects multiple bits, it is considered as Multi-bit upset
(MBU) and leads to second and third-order effects. A secondor-
der effect happens if an SEU simultaneously strikes two adja-
cent sensitive nodes located in two different memory cells. And
when MBU occurs as a result of a single particle striking two
adjacent sensitive nodes located in the same memory cell, it is
considered a third-order effect.

Fig. 1. Organization of this survey
Rys. 1. Organizacja niniejszego przeglądu

Fig. 2. Left: Channel stuck-at, Right: Pixel stuck-at [43]
Rys. 2. Po lewej: zablokowany kanał, po prawej: Piksel zablokowany

Sometimes fault model depends on the targeted application
and how that application is implemented on the hardware. For
instance, in [43] has proposed two fault models (Fig. 2) for the
deep convolutional neural implementation on the FPGAs. a)
Pixel stuck-at, which means the stuck-at fault in a single pixel
of the CNN feature maps. b) Channel stuck-at, which means
the whole channel in CNN feature maps is faulty.

2.2. Impact of a Fault in ASICs and FPGAs
FPGAs are becoming a valuable candidates for AI applications
because of their high density, high performance, shorter time
to market, and re-programmability. On the other hand, ASICs,
which stand for Application-Specific Integrated Circuits, are
designed for a specific application, and their functionality rema-
ins the same throughout their operating life.

In ASICs, the logic is permanently mapped to gates and flip-
-flops in silicon. Whereas in FPGAs, logic is mapped on the con-
figurable logic blocks (CLBs). CLBs consist of Lookup Tables
(LUTs), flip-flops (FFs), and routing resources (switch matrix,
multiplexors, and connection segments). Most FPGAs also have
dedicated memory blocks as hard macros called block RAMs
(BRAMs). Unlike ASICs, FPGAs are programmable, and their
functionality can be changed by uploading a new bitstream. The

90

A Survey on Fault-Tolerant Methodologies for Deep Neural Networks

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 2/2023

bitstream contains configuration frames, which configure all the
programmable and memory elements in the FPGA fabric. All
these bits are potentially sensitive to radiation effects; therefore,
the design should be thoroughly investigated against various
fault models.

In [21] has investigated the effect of radiation in ASICs and
FPGAs. Figure 3 has illustrated that effect of radiation in the
combinational and sequential logic of ASICs is transient. Based
on the pulse duration of the SETs (Glitch), transient faults in
the combinational logic of the design may or may not be lat-
ched by a storage cell. On the other hand, faults in the sequen-
tial logic (SEUs) remain in the storage cell until the next load.

In the case of SRAM-based FPGAs, the user’s logic is mapped
on the CLBs. CLBs consist of LUTs, FFs, and routing resour-
ces. An SEU in the LUT memory cell modifies the implemented
combinational logic and results in undesired program behavior.
The end effect of SEUs in the CLBs is permanent, and it can
only be mitigated by re-programming the bitstream. Similarly,
an SEU in the routing matrix will lead to connecting/discon-
necting a connection between CLBs. This can also be mitiga-
ted using bitstream reconfiguration. An SEU in block RAMs
also has a permanent effect; therefore, block RAMs should be
protected against faults using different error-detecting and cor-
recting techniques. In a scenario, when an SEU occurs in the
sequential logic synthesized in the FPGA, it will have a tempo-
rary effect, as the faulty value will be overwritten in the next
load of the flip flop [21].

As we have discussed, the impact of the fault is sometimes dif-
ferent in ASICs and FPGAs for the reason that FPGA fabric is
a bit different compared to ASICs. Several fault-tolerant metho-
dologies, which have been proposed for ASICs, may not be direc-
tly applicable to FPGAs. Therefore, it is extremely important
that fault modeling and fault analysis of a design should be done
based on the targeted hardware platform. A clear understanding
of the targeted hardware platform can also help in the design
and development of relevant fault mitigation methodologies.

3. Deep Neural Networks

Artificial Intelligence (AI) has created an enormous impact on
all aspects of life. AI, as described in [12], “is a system’s ability
to interpret external data correctly, to learn from such data,
and to use those learnings to achieve specific goals and tasks
through flexible adaptation.” Machine Learning is a subset
of AI, which deals with computer algorithms that can train
a model to perform tasks and take decisions without explici-

tly programming to do so. Deep Learning comes under the
umbrella of Machine Learning (ML), and it uses Artificial
Neural Networks (ANNs), whose architecture is inspired by
the structure and function of the brain. ANNs have recently
become the standard tool for solving a variety of prediction
and classification problems. They generally consist of an input
layer, an output layer, and hidden layers. In past years, ANNs
have grown in complexity, comprising of many hidden layers,
and are able to solve many complex problems in computer
vision, natural language processing, and medical science, etc.
ANNs are also commonly known as Deep Neural Networks.
The term ’Deep’ refers to the use of multiple layers in the
ANNs. Each layer consists of neurons that connect to other
neurons in the corresponding layers via an activation function.
Each neuron has its associated parameters, i.e., weight, bias,
and/or filter coefficient. Authors of [23, 40] have investigated
the ANNs in detail.

3.1. Deep Neural network design cycle
The design cycle of DNNs consists of two major stages: Training
and Inference.

Training: DNNs model should be trained before its deploy-
ment on the targeted device. Training is a computeintensive
process, generally carried out by high-performance computing
machines, i.e., cloud servers, which involves the use of a training
data set to find suitable values for the network parameters. After
the training is done, the performance of the model is tested aga-
inst a test data set.

Inference: After the model is trained and tested, it is ready
to be deployed. At this stage, the NN performs classification/
decision-making using actual, previously unseen data (i.e., in
real-time). Target hardware for inference can vary based on
the application. For applications such are movie recommenda-
tions on Netflix or social media Ads, inference happens on the
cloud. In comparison, inference happens on edge in the case of
Cyber-Physical Systems (e.g., autonomous vehicles and weara-
ble healthcare devices).

3.2. Neural Network Taxonomy
Since their advent, NNs have progressively improved. The first
generation was single-layer perceptron or multi-layer perceptron
(MLP). MLP is also called a feedforward neural network for the
reason that nodes in the network do not form a cycle. MLP can
generally perform classification and regression problems.

The second-generation (Fig. 4) of the neural networks con-
sists of convolutional neural networks (CNNs), RNNs, capsule
networks (CapsNets) [16], and generative adversarial networks

Fig. 3. Impact of a fault in ASIC and FPGA architecture [21]
Rys. 3. Wpływ błędu w architekturze ASIC i FPGA

Fig. 4. 1st, 2nd and 3rd neural networks generations
Rys. 4. Pierwsza, druga i trzecia generacja sieci neuronowych

91

Rizwan Tariq Syed, Markus Ulbricht, Krzysztof Piotrowski, Milos Krstic

(GANs) [11]. CNNs have proven so effective in solving an image
classification problem. CNNs have the ability to develop an
internal representation of a two-dimensional image. This allows
the CNN model to learn the position and scale-invariant struc-
tures in the image data, which is very important when working
with images. Various CNN models have been proposed, namely,
VGG16 [38], Alexnet [22], Resnet [15], etc., which have shown
state-of-the-art performance against the ImageNet dataset [35].

The third generation (Fig. 4) of neural networks makes use
of spiking NNs (SNNs) [29] in an attempt to emulate human
brain-like functioning. The major difference between a traditio-
nal ANN and SNN is how the information propagates through
the network. Therefore, instead of continuously changing in time
values used in artificial neural networks, spiking NNs works with
discrete events that occur at specific points of time. Spiking NNs
receives a series of spikes as input and produces a series of spikes
as the output, also referred to as spike trains [29]. The emphasis
of this survey is on MLPs and CNNs.

4.	Factors Affecting the Resiliency
of Deep Neural Networks

We have discussed in the section 2 how the hardware is vulne-
rable and leads to incorrect results in the presence of faults. In
the section 3, we have briefly explained the DNNs, their design
cycle, and taxonomy. Eventually, the DNNs will be implemen-
ted on hardware. Therefore it is essential to analyze the neural
networks under the influence of hardware faults. Deep Neural
Networks are said to have some inherent resiliency. However,
faults can still influence the accuracy of the DNN model, which
can further lead to incorrect output classification or prediction.
Therefore, for safety-critical applications, it becomes vital to
do a thorough design analysis.

The term resiliency in the DNNs refers to the ability to main-
tain a given accuracy even in the presence of errors. There
are many factors that can affect the resiliency of deep neural
networks. i.e., Network Architecture, Layer Type, Data Type,
the bit position of weights, pruning, quantization, etc. Authors
of [6, 24] have shown that deeper networks are more resilient,

Fig. 5. Impact of a fault in floating point and fixed point number [39]
Rys. 5. Wpływ błędu na liczbę zmiennoprzecinkową i stałoprzecinkową

and the use of batch normalization layers in the neural network
architecture helps in generalizing and improving the resiliency of
the network model. In [34] was figured that, that the impact of
fault is more when it happens at the back of the network (i.e.,
in the last layers), whereas faults effects tend to be mitigated
or neutralized if happening in the initial layers of the network
(i.e., the first layer). In [6, 27] was demonstrated that pruning
and quantization also assist in increasing the resiliency of the
network model.

Datatype also has an enormous role to play in the resiliency
of the DNN model. As shown in Fig. 5, we analyze how a fault
can impact a DNN with an IEEE-754 floatingpoint 32 (FP32)
data type versus a 4-bit Fixed Point (FxP) data type. Accor-
ding to the IEEE-754 standard, the FP32 data type consists of
8 exponent bits, 23 fraction bits 1 sign bit. On the other hand,
the 4-bit FxP data type consists of 1 sign bit and 3 fraction
bits. As discussed in the previous section, the DNN model con-
sists of thousands of parameters. Consider 0.25 as one of the
parameters (weight) of the DNN model (Fig. 5). If the weight
value is represented as an FP32 number, a fault in the most
significant exponent bit of the FP32 number can substantially
change the value of the DNN’s parameter either to a very high
value or to a very low value. If not masked, this fault could pro-
pagate through the DNN network and drastically decrease the
accuracy. The impact of a fault also causes a deviation in FxP
numbers, which leads to a decrease in accuracy, but the overall
impact would be less due to the less dynamic range of the FxP
numbers [39]. Therefore it is crucial to define a data type and
bit-width, which can fulfill the requirement of accuracy and
reliability, and hardware resources.

Another aspect that impacts the reliability of the DNN
model is the hardware architecture implemented on the tar-
geted hardware, e.g., ASICs, FPGAs. The faults can occur in
the datapath, i.e., latches, flip flops, etc., and also in the data
buffers. Faults in both locations propagate differently. Faults
in the data path will be read once and can get over-written by
the correct value in the next load. Whereas faults in the buf-
fers may be read multiple Times because of the reuse (reuse of
weights, input feature maps, output feature maps, etc.), and
hence the same faulty value can be spread to multiple locations
very quickly [24].

5. Fault Tolerant Deep Neural Network
Methodologies

In this section, we will explore several state-of-the-art. fault-
-tolerant methodologies which were proposed by the correspon-
ding research community.

Fig. 6. Pruning impact on the
weights distribution of the
CNN model
Rys. 6. Wpływ przycinania na
rozkład wag modelu CNN

92

A Survey on Fault-Tolerant Methodologies for Deep Neural Networks

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 2/2023

5.1. Model Compression
The challenge is that running deep learning models is a reso-
urce-intensive process and deploying these models, with millions
of parameters, on edge devices is a growing concern. There are
DNN models from a few thousand parameters to more than
a billion parameters. Deploying these big models on the har-
dware is very challenging, especially in safety-critical applica-
tions. Due to these challenges, research in the area of model
compression has been very actively pursued over the last few
years. The goal of model compression is to reduce the model
size so that it can be deployed on low power and resource con-
straint devices without a significant accuracy drop. Some model
compression methods which has been proposed in recent years
are parameter pruning, quantization, knowledge distillation,
low-rank factorization, transferred/compact convolutional fil-
ters, etc. In this study, we focus on the two popular two model
compression methods: a) Pruning b) Quantization. Pruning and
quantization were not particularly proposed as a method to
improve resiliency. It is exciting to study them for two reasons.
a) Pruning and quantization affect the resiliency of the DNNs.
b) Both methods have become the de-facto standard during
the DNN deployment on the hardware; therefore, it is crucial
to study it from the fault tolerance perspective.

Pruning: Many experiments have concluded that there are
many parameters in the DNNs which are not important, and it
is still possible to achieve the desired performance in the absence
of these parameters. Thus, pruning is a way to remove unne-
cessary parameters, thereby making the deep neural networks
sparsed. Figure 6 illustrates the impact of the magnitude-based
weight pruning method, which gradually zeroes out weights of
the model during the training process to achieve model spar-
sity. This sparsity in the neural network parameters due to the
pruning has two advantages. a) It reduces the mode size, which
further helps in reducing the computational complexity, leading
to faster inference. b) It improves the resiliency of the DNN
model [6]. Pruning is further classified into channel pruning,
filter pruning, connection pruning, and layer pruning. Different
pruning strategies can also have a different resiliency impact on
neural networks.

Quantization: A typical deep neural network consists of
weights in 32-bit floating-point values. FP32 computations requ-
ire either a floating-point unit or additional hardware resources
to perform dynamic range shifts computation. This will lead
to an increase in hardware resources and latency, which gains
makes it challenging to deploy these networks in hardware devi-
ces. DNN quantization comes to the rescue in this situation.
DNN quantization refers to a method of approximating a neu-
ral network’s parameters and activations to low bit-width fixed
point (FxP) numbers as shown in Fig. 7. Because, in many cases,
the dynamic range that the FP32 provides is not needed. FxP
numbers are generally hardware-friendly. FxP computations are
faster than FP32, and it also costs less area overhead as com-
pared to FP32 Computations. Along with the benefits such as
(a) lower model size (b) lower inference latency, DNN Quantiza-
tion also results in improving the resiliency of the DNN Model.

Goldstein have studied the impact of SEUs in three different
CNNs models with different sparsity [9]. They have concluded
that Pruning and Quantization combined can increase the resi-
liency by up to 108.7 times. Other authors have explored further
the impact of SEUs in homogenous and heterogeneous quanti-
zed models and concluded that, in general, quantization helps
in improving the resiliency of the DNN model [29]. Resiliency
between the models can also vary based on different levels of
quantization and more vigorous quantization could sacrifice resi-
liency and accuracy. In [36] have aggressively quantized the DNN
models (VGG16 and Lenet) to as low as the binary values and
have reported an increase in the fault resiliency of DNN models
(VGG16 and Lenet) by 10000x.

5.2. Clipped Activations
We have examined in section 4 Fig. 5, how a fault can impact
a DNN with an FP32 data type versus a 4-bit FxP data type
and illustrated that fault in the MSB of the exponent bit can
saturate the DNN model and lead to undesirable results. In [18]
was observed a similar impact of fault on the FP32 as illustrated
in Fig. 5 and to solve the problem of saturation the technique
of ’The Clipped Activations Function’ has been proposed. By
default, the output of the activation function is unbounded; the-
refore, in the presence of a fault, the faulty output of extremely
high magnitude can propagate through the network. They have
replaced the unbounded activations functions with a bounded
activations function to restrict the output of the activation func-
tion to a specific threshold value. With this methodology, they
have achieved 68.92 % improvement in accuracy compared to
the baseline VGG-16 model at 1 × 10−2 fault rate.

Similarly, in [2, 7] have also explored the similar phenome-
non of restricting the output of neurons to make them more
resilient. Restricting the output of the neurons results in redu-
ced deviations. Neural networks have the capability to tolerate
small deviations due to their inherent resiliency.

5.3. FAT: Fault Aware Training
Machine Learning deals with computer algorithms that have
the ability to learn to perform tasks and take decisions without
explicitly programming to do so. The process of learning is called
’Training’. Authors in [43] have leveraged this idea and proposed
Fault Aware Training (FAT). In other words, Fault Injection can
be performed during the training phase. They treat resiliency as
a learning problem, and they want the neural network to learn

Fig. 7. Quantization impact on weights distribution [29]
Rys. 7. Wpływ kwantyzacji na rozkład wag

93

Rizwan Tariq Syed, Markus Ulbricht, Krzysztof Piotrowski, Milos Krstic

the impact of faults during the training phase. Fault Injection
layers have been added inside the DNN model (Fig. 8). Faults
are injected into the neural network during the training phase
with a probability in the range of 1–10 %.

There is the concept of using Dropout layers in the training of
the neural networks to reduce overfitting and make the behavior
of the model more generic. The fault injection layer during FAT
behaves somewhat similarly to Dropout layers. FAT supports
injecting many possible fault values into the DNNs, while dro-
pout only inserts zeros during the training. The detailed analysis
of two different fault models under the influence of faults with
different probabilities is discussed in the paper.

5.4. FAP and FAP+T
In [44] was considered a DNN accelerator based on a systolic
array, i.e., Google Tensor Processing Unit (TPU), and proposed
two fault-tolerant methodologies. a) Fault Aware Pruning (FAP)
b) Fault Aware Pruning + Retraining (FAP+T). They have con-
sidered permanent faults, which occurred in the integrated cir-
cuits due to process variations or manufacturing defects. After
detailed gate-level simulations of stuck-at faults, they have conc-
luded that the accuracy of the TPU drops drastically even if there
are just four faulty MAC units among a total of 64K MAC units.

FAP: Pruning is a method to remove connections that are
not important. It was leveraged this idea and used it to prune
the fault MACs causing the accuracy degradation [44]. Using
standard post-fabrication analysis, they find the location of the
faulty MACs, and with some additional bypass circuity, they can
bypass the faulty MACs. The area overhead of the new systolic
array architecture due to the new bypass path is about 9 %.

FAP+T: With FAP, it is only possible to bypass the faulty
MACs. An additional re-training step is added to recover the
accuracy loss because of the missing MAC units. In this step,
the model learns to adapt to the change caused due to missing
MAC units and tries to attain its baseline classification accu-
racy. Authors have claimed that, even with 50 % faulty MAC
units, FAP+T can provide close to baseline accuracy. Post-
-fabrication analysis of every chip can be different; therefore,
FAP and FAP+T need to be performed for all the chips with
manufacturing defects.

5.5. Selective Hardening
Hardware redundancy-based methods (i.e., DMR and TMR)
generally involve full hardware replication. Triple Modular
Redundancy (TMR) has been used in the industry for many
decades. Triplication of a design does provide the required resi-
liency to the safety-critical system but at the cost of increased
power consumption and a considerable area overhead of 200 %.
There are different attractive alternatives to full TMR for a wide
variety of safety-critical applications. Typically, not all safety-
-critical applications focus on very high resiliency requirements.

Further, not all the components in the design are essential. We
can focus on hardening only the essential parts of the design, in
other words, only triplicating the sensitive part of the design.
This method is commonly known as Selective Hardening. Selec-
tive hardening can be applied on various abstraction levels in the
design. In neural networks, it can be applied in the layer-level
[20, 26], neurons level (Fully Connected layers) or channel-level
(CNN Layers) [5] and also at the Processing Element (PEs) level.

Authors [5, 26, 1] have applied selective hardening techniques
in the CNNs and have made a similar argument that triplicating
the whole DNN model would cost a 200 % increase in the area
overhead. They have proposed Selective layer and Channel Tri-
plication, respectively, in a two-step process. a) Identification of
the vulnerable CNN channels, which causes a decrease in accu-
racy in the presence of Faults b) triplication of the identified
CNN layers/channels. They have used different network archi-
tectures of various sizes for their analysis. In [26] was performed
fault injection using the FPGA accelerated fault injection and
neutron flux radiation setup. Selective layer hardening resulted
in the masking of 40 % faults with 8 % additional area overhead.
While in the study [5], they can reduce the area overhead from
200 % to 173 % for a worst-case accuracy drop of 0.5 %. For
a worst-case accuracy drop of 1 % and 2 %, they have reported
a 200 % to 129.7 % and 49.87 % reduction in area overhead,
respectively. This also validates the argument that for more
strict accuracy requirements, more hardware area will be needed
and vice versa. Hence, depending upon the application requ-
irements, selective hardening of the design can be performed.

On hardware, neural networks are mapped to multiple proces-
sing elements. These processing elements perform multiply and
accumulate operations. Based on the hardware architecture of
the DNN, a single neuron, singlechannel, single layer, or multi-
ple layers can be mapped to these processing elements. A fully
parallelized architecture of a neural network in which each neu-
ron is mapped to one PE is very unlikely for bigger networks.
Therefore, in most cases, these PEs are being shared between
different neurons, channels, or layers. Therefore, even one faulty
PE can cause a huge accuracy degradation. In [5] was investiga-
ted that the more PEs are being shared, the higher it will lead
to a decrease in accuracy in case of a fault. Therefore, it would
be interesting to explore selective hardening at the PE level.

5.6. Ensemble Learning Based Robustness
Ensemble learning methods were initially proposed to reduce
overfitting or better generalize the results compared to the
results from a single model instance. Multiple ML models are
trained on the same dataset during the training phase. The
output of each model is processed to estimate the best outcome
during the inference phase. One way of selecting the best out-
come is to take an average of predictions of individual models.
In [33] was used an ensemble learning-based approach to incre-

Fig. 8. Fault injection layer in
DNN architecture [43]
Rys. 8. Warstwa wstrzykiwania
błędów w architekturze DNN

94

A Survey on Fault-Tolerant Methodologies for Deep Neural Networks

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 2/2023

ase the robustness of the CNN model. The larger the number
of CNN models in an ensemble, the greater will be the har-
dware resource utilization and power consumption. The author
has used quantization and pruning to compress the model 1/N
times its initial size. The hardware resources they save during
the model compression are utilized to create an ensemble of
N CNN models (Fig. 9). In contrast to traditional ensemble
methods, their proposed approach of compressed ensembles can
be deployed on constrained devices with no energy or memory
overhead. The output of the CNN ensemble is averaged to com-
pute the final predictions. Their target hardware is an edge
device comprising of processor connected to main memory via
a 32-bit bus. They have considered faults in memory that hap-
pen due to sub-nominal operating conditions.

5.7. Knowledge Distillation Based Redundancy
In [25] was developed an approach that uses knowledge distilla-
tion-based redundancy to detect faults. Knowledge distillation,
proposed in [17], is a training-based solution for reducing the
model’s size, in which the knowledge from the teacher model is
transferred to a simpler student model. In this way, a smaller
student model can approximate the results of the bigger teacher
model. The teacher model is generally a complex ML/DL model
or an ensemble of models. In contrast, a student model is usu-
ally a single smaller model that is much more straightforward to
deploy without substantial loss in performance. Their approach
makes use of two DNN models, i.e., task DNN (teacher model)
and checker DNN (student model). Instead of using an expen-
sive DMRbased solution, have reduced the size of the checker
DNN model by utilizing knowledge distillation and architecture
compression approach [25]. Both of these models process each
input sample (see Fig. 10). A comparator block compares the

outcome of both models. If the results are consistent, they are
considered for further processing; otherwise, re-computation
on the task DNN is performer for potential recovery from the
fault. They have performer the experiments from the security
perspective and considered the fault model in which the attac-
ker is trying to compromise the accuracy of a DNN system by
maliciously injecting faults. Experimental results show that at
the cost of 10 % overhead, their approach can reduce 90 % of
the risks. This approach can be considered and studied from the
reliability perspective as well.

5.8. ABFT: Algorithm-based Fault Tolerance
Matrix multiplications are the fundamental arithmetic opera-
tion in neural networks. In order to make this matrix multipli-
cations fault-tolerant, Algorithm-based fault tolerance (ABFT)
was proposed in [19]. ABFT cannot only detect the errors but
also can correct the errors. ABFT is a very attractive solution
to make the neural network fault-tolerant, and it costs low area
overhead as compared to traditional TMR methods. The core
idea behind ABFT can be thought of as an extension of ECC
to numeric structures like vectors and matrices. In [45, 37] was
applied the ABFT approach to CNN models. Zhao et al. (2020)
have considered some of the widely used CNN models, i.e.,
AlexNet, VGG-19, ResNet-18, and YOLOv2, and demonstra-
ted the results as per runtime overhead metric. Their ABFT
approach can handle soft errors with a very small runtime over-
head of 4 % to 8 %. In [37] was implemented CNNs on three
GPU architectures, i.e., K40, Tegra X1, Titan X. Their ABFT
approach is able to detect and correct 50 % to 60 % of radia-
tion-induced corruptions.

Similar to ABFT, was proposed a lowoverhead error detec-
tion technique for matrix multiplications [28]. I.e., Light ABFT.

Fig. 9. (a) Traditional ensemble
of AI models (b) Ensemble of
compressed AI models
Rys. 9. (a) Tradycyjny
zestaw modeli AI (b) Zestaw
skompresowanych modeli AI

Fig. 10. Knowledge distillation
based redundancy
Rys. 10. Redundancja oparta na
destylacji wiedzy

95

Rizwan Tariq Syed, Markus Ulbricht, Krzysztof Piotrowski, Milos Krstic

Unlike ABFT, which can perform error detection and correc-
tion, the light ABFT approach can only detect errors. Author
have targeted FPGAs, and he argues that as soon as the error is
detected with Light ABFT, it can be corrected using fast partial
reconfiguration of the FPGA bitstream.

Authors of [31] have made use of the linearity property of the
fully connected layers and convolutions layers and have proposed
a low overheard error detection method, called as Sanity-Check.
The ABFT also inspires this approach, and in this approach,
with the addition of two neurons (namely sanity-neuron and
check-neuron), they can detect whether the layer’s output is
erroneous. The sanity-neuron acts as an additive inverse of the
rest of the neuron in the layer, while the check-neuron sums
the output to confirm if the result is zero or non-zero. A similar
approach is applied in the case of convolution layers.

5.9. Arithmetic Error Codes
Arithmetic error codes, which comes under the umbrella of
ECCs, are an exciting way to detect and correct errors, as they
are conserved during most arithmetic operation [32]. They have
been used in various safety-critical applications to increase the
reliability of the systems. In [10] authors have used a specific
class of arithmetic codes, known as AN-Codes, in state-of-the-art
DNN accelerators. They have exhibited that they can achieve
99 % fault coverage with a 5-bit arithmetic code with minimal
area and power overhead.

5.10. Inter Frame Spatio-Temporal Correlation
In [4] was proposed a very different and unique approach to
detect errors in CNNs. The general functionality of CNNs is
that it takes an image as input and output the predictions. Each
image is a frame, and many frames are captured and processed
in one second. CNNs treat each frame independently and predict
the output. Most of the time, these input frames are correlated,
and hence the output predictions are also similar. Therefore, not
only do the input frames correlate with each other but also the
output predictions. They use both the input and output correla-
tion information to detect errors in a frame as it is processed. If
there is a difference in the correlation of output predictions, then
there are two possibilities. a) The input frame is also different.
In this case, the change in the output predictions is justified
by the change in frames. b) Erroneous output prediction. Sub-
sequent frames are identical, and hence the output predictions
should also be identical. They have performed error analysis on
two CNNS, i.e., YOLO and Faster R-CNN trained on Caltech
Pedestrian Dataset [3]. They are able to detect 80 % of errors
while keeping the area overhead low.

6. Conclusion

Safety-critical applications require fault-free execution of
critical tasks. The increased use of DNNs in safety-critical
applications demands a thorough understanding of targeted
hardware (ASICs, FPGAs) and DNNs’ characteristics. Thus,
this survey paper has discussed and differentiated between
ASICs and FPGA fault models. The essential concept of three
generations of neural networks is explained. We extended this
discussion and examined factors that impact the resiliency
of neural networks and several state-of-the-art fault mitiga-
tion methodologies.

Improving the reliability of the DL accelerators is like ”cha-
sing a moving target”. The design of an efficient faulttolerant
AI accelerator will involve the combined effort of researchers in
both the AI and reliability domains. Previously, AI models have
been treated as black boxes. Now, the increased use of AI in
safety-critical applications, i.e., Medical, Automotive, Industries,
Defense, Space, etc., has led researchers to work on ”Explainable

AI”. The insights obtained from these studies will help design
efficient faulttolerant AI accelerators.

Acknowledgements
This work was supported by the European Regional Develop-
ment Fund within the BB-PL INTERREG V A 2014-2020 Pro-
gram, “reducing barriers using the common strengths”, project
SpaceRegion, grant number 85038043.

References

1.	 Adam K., Izeldin I.M., Ibrahim Y., A selective mitigation
technique of soft errors for DNN models used in healthcare
applications: DenseNet201 case study. „IEEE Access”, Vol.
9, 2021, 65803–65823. DOI: 10.1109/ACCESS.2021.3076716.

2.	 Chen Z., Li G., Pattabiraman K., A low-cost fault corrector
for deep neural networks through range restriction. [In:] 51st
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2021, 1–13,
DOI: 10.1109/DSN48987.2021.00018.

3.	 Dollar P., Wojek C., Schiele B., Perona P., Pedestrian detec-
tion: An evaluation of the state of the art. „IEEE Transac-
tions on Pattern Analysis and Machine Intelligence”, Vol. 34,
No. 4, 2012, 743–761, DOI: 10.1109/TPAMI.2011.155.

4.	 Draghetti L.K., Santos F.F.D., Carro L., Rech P., Detec-
ting Errors in Convolutional Neural Networks Using Inter
Frame Spatio-Temporal Correlation. IEEE 25th International
Symposium on On-Line Testing and Robust System Design,
IOLTS 2019, 310–315, DOI: 10.1109/IOLTS.2019.8854431.

5.	 Gambardella G., Kappauf J., Blott M., Doehring C.,
Kumm M., Zipf P., Vissers K., Efficient error-tolerant
quantized neural network accelerators. IEEE International
Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, DFT 2019.
DOI: 10.1109/DFT.2019.8875314.

6.	 Gao Z., Wei X., Zhang H., Li W., Ge G., Wang Y., Reviriego
P., Reliability evaluation of pruned neural networks against
errors on parameters. IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology
Systems, DFT 2020, DOI: 10.1109/DFT50435.2020.9250812.

7.	 Ghavami B., Sadati M., Fang Z., Shannon L., FitAct: Error
resilient deep neural networks via fine-grained post-trainable
activation functions. Design, Automation Test in Europe
Conference Exhibition (DATE ‘22), 1239–1244,
DOI: 10.23919/DATE54114.2022.9774635.

8.	 Gill B.S. Design and Analysis Methodologies to Reduce Soft
Errors in Nanometer VLSI Circuits. Ph.D. thesis, 2006,
Department of Electrical Engineering and Computer Science
CASE WESTERN RESERVE UNIVERSITY.

9.	 Goldstein B.F., Reliability evaluation of compressed deep
learning models. 2020 IEEE 11th Latin American Sympo-
sium on Circuits Systems (LASCAS), 1–5,
DOI:10.1109/LASCAS45839.2020.9069026.

10.	Goldstein B.F., Ferreira V.C., Srinivasan S., Das D.,
Nery A.S., Kundu S., Franca F.M.G., A lightweight error-
-resiliency mechanism for deep neural networks. 22nd Inter-
national Symposium on Quality Electronic Design (ISQED),
2021, 311–316. DOI:10.1109/ISQED51717.2021.9424287.

11.	Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-
-Farley D., Ozair S., Courville A., Bengio Y., Generative
adversarial nets. (Z. Ghahramani, M. Welling, C. Cortes, N.
Lawrence, and K.Q. Weinberger eds.), „Advances in Neural
Information Processing Systems”, Vol. 27, 2014, 2672–2680,
DOI: 10.5555/2969033.2969125.

12.	Haenlein M., Kaplan A., A brief history of artificial intel-
ligence: On the past, present, and future of artificial intel-
ligence. „California Management Review”, Vol. 61, No. 4,
2019, 5–14. DOI: 10.1177/0008125619864925.

96

A Survey on Fault-Tolerant Methodologies for Deep Neural Networks

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 2/2023

13.	Hass K.J., Probabilistic estimates of upset caused by single
event transients, 1999.

14.	Hayes J., Fault modeling for digital mos integrated circuits.
„IEEE Transactions on Computer-Aided Design of Integra-
ted Circuits and Systems”, Vol. 3, No. 3, 1984, 200–208,
DOI: 10.1109/TCAD.1984.1270076.

15.	He K., Zhang X., Ren S., Sun J., Deep residual learning
for image recognition. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 770–778,
DOI: 10.1109/CVPR.2016.90.

16.	Hinton G.E., Krizhevsky A., Wang S.D., Transforming auto-
-encoders. [In:] T. Honkela, W. Duch, M. Girolami, S. Kaski,
(eds.), Artificial Neural Networks and Machine Learning –
ICANN 2011, 44–51. DOI: 10.1007/978-3-642-21735-7_6.

17.	Hinton G.E., Vinyals O., Dean J. Distilling the knowledge
in a neural network. ArXiv, 2015,
DOI: 10.48550/arXiv.1503.02531.

18.	Hoang L.H., Hanif M.A., Shafique M., FT-ClipAct: Resi-
lience analysis of deep neural networks and improving their
fault tolerance using clipped activation. 2020 Design, Auto-
mation Test in Europe Conference Exhibition (DATE),
1241–1246. DOI:10.23919/DATE48585.2020.9116571.

19.	Huang K.H., Abraham, J.A. (1984). Algorithm-based fault
tolerance for matrix operations. IEEE Transactions on Com-
puters, C-33(6), 518–528. DOI:10.1109/TC.1984.1676475.

20.	Ibrahim Y., Wang H., Bai M., Liu Z., Wang J., Yang Z.,
Chen Z., Soft Error Resilience of Deep Residual Networks
for Object Recognition. „IEEE Access”, Vol. 8, 2020, 19490–
19503, DOI: 10.1109/ACCESS.2020.2968129.

21.	Kastensmidt F.L., Carro L., Reis R., Fault-tolerance techni-
ques for SRAM-based FPGAs, 2006, Springer,
DOI: 10.1007/978-0-387-31069-5.

22.	Krizhevsky A., Sutskever I., Hinton G.E., Imagenet clas-
sification with deep convolutional neural networks. [In:] F.
Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger
(eds.), Advances in Neural Information Processing Systems,
Vol. 25, 2012, Curran Associates, Inc.

23.	LeCun Y., Bengio Y., Hinton G., Deep learning. „Nature”,
Vol. 521(7553), 2015, 436–444. DOI: 10.1038/nature14539.

24.	Li G., Hari S.K.S., Sullivan M., Tsai T., Pattabiraman K.,
Emer J., Keckler S.W., Understanding error propagation in
deep learning neural network (DNN) accelerators and appli-
cations. [In:] Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis, 2017, 1–12, DOI: 10.1145/3126908.3126964.

25.	Li Y., Li M., Luo B., Tian Y., Xu Q., DeepDyve: Dynamic
verification for deep neural networks. [In:] Proceedings of the
2020 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’20, 101–112. Association for Com-
puting Machinery, New York, NY, USA,
DOI: 10.1145/3372297.3423338.

26.	Libano F., Wilson B., Anderson J., Wirthlin M.J., Cazzaniga
C., Frost C., Rech P., Selective hardening for neural networks
in FPGAs. „IEEE Transactions on Nuclear Science”, Vol.
66, No. 1, 2019, 216–222. DOI: 10.1109/TNS.2018.2884460.

27.	Libano F., Wilson B., Wirthlin M., Rech P., Brunhaver J.,
Understanding the impact of quantization, accuracy, and
radiation on the reliability of convolutional neural networks
on FPGAs. „IEEE Transactions on Nuclear Science”, Vol. 67,
No. 7, 2020, 1478–1484, DOI: 10.1109/TNS.2020.2983662.

28.	Libano F., Analyzing and Improving the Reliability of Matrix
Multiplication and Neural Networks on FPGAs. Ph.D. thesis,
2021, Arizona State University.

29.	Lyashenko V., Basic guide to spiking neural networks
for deep learning, 2020, https://cnvrg.io/spiking-neural-
-networks/.

30.	Mittal S., Vetter J.S., A survey of techniques for mode-
ling and improving reliability of computing systems. „IEEE

Transactions on Parallel and Distributed Systems”, Vol. 27,
No. 4, 2016, 1226–1238. DOI: 10.1109/TPDS.2015.2426179.

31.	Ozen E., Orailoglu A., Sanity-check: Boosting the reliability
of safety-critical deep neural network applications. In 2019
IEEE 28th Asian Test Symposium (ATS), 7–75.
DOI: 10.1109/ATS47505.2019.000-8.

32.	Parhami, Avizienis, Detection of storage errors in mass
memories using low-cost arithmetic error codes. „IEEE
Transactions on Computers”, Vol. C-27, No. 4, 1978, 302–
308. DOI: 10.1109/TC.1978.1675102.

33.	Ponzina F., Peón-Quirós M., Burg A., Atienza D., E2CNNs:
Ensembles of convolutional neural networks to improve
robustness against memory, errors in edge-computing devi-
ces. „IEEE Transactions on Computers”, Vol. 70, No. 8,
2021, 1199–1212. DOI: 10.1109/TC.2021.3061086.

34.	Ribes S., Malek A., Trancoso P., Sourdis I., Reliability ana-
lysis of compressed CNNs. 2021.

35.	Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S.,
Huang Z., Karpathy A., Khosla A., Bernstein M., Berg A.C.,
Fei-Fei, L., ImageNet Large Scale Visual Recognition Chal-
lenge. „International Journal of Computer Vision”, Vol. 115,
No. 3, 2015, 211–252, DOI: 10.1007/s11263-015-0816-y.

36.	Sabbagh M., Evaluating fault resiliency of compressed deep
neural networks. 2019 IEEE International Conference on
Embedded Software and Systems (ICESS), 2019, 1–7.
DOI:10.1109/ICESS.2019.8782505.

37.	Santos F.F.D., Evaluation and Mitigation of Soft-Errors
in Neural Network-Based Object Detection in Three GPU
Architectures. 47th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks Workshops,
DSN-W 2017, 169–176. DOI:10.1109/DSN-W.2017.47.

38.	Simonyan K., Zisserman A., Very deep convolutional
networks for large-scale image recognition, 2015,
DOI: 10.48550/arXiv.1409.1556.

39.	Syed R.T., Ulbricht M., Piotrowski K., Krstic, M., Fault resi-
lience analysis of quantized deep neural networks. IEEE 32nd
International Conference on Microelectronics (MIEL), 2021,
275–279. DOI: 10.1109/MIEL52794.2021.9569094.

40.	Sze V., Chen Y.H., Yang T.J., Emer J.S., Efficient proces-
sing of deep neural networks: A tutorial and survey. Pro-
ceedings of the IEEE, Vol. 105, No. 12, 2017, 2295–2329,
DOI: .1109/JPROC.2017.2761740.

41.	Werner S., Navaridas J., Luján M., A survey on design
approaches to circumvent permanent faults in networkson-
-chip. „ACM Computing Surveys”, Vol. 48, No. 4, 2016,
DOI:10.1145/2886781.

42.	Yi C.H., Kwon K.H., Jeon J., Method of improved hardware
redundancy for automotive system. 14th International Sym-
posium on Communications and Information Technologies
(ISCIT), 2014, 204–207, DOI: 10.1109/ISCIT.2014.7011901.

43.	Zahid U., Gambardella G., Fraser N.J., Blott M., Vissers K.,
FAT: Training neural networks for reliable inference under
hardware faults. 2020 IEEE International Test Conference
(ITC), 2020, 1–10. DOI: 10.1109/ITC44778.2020.9325249.

44.	Zhang J., Gu T., Basu K., Garg S., Analyzing and mitigating
the impact of permanent faults on a systolic array based neu-
ral network accelerator. Proceedings of the IEEE VLSI Test
Symposium, 2018, 1–6, DOI: 10.1109/VTS.2018.8368656.

45.	Zhao K., Di S., Li S., Liang X., Zhai Y., Chen J., Ouyang
K., Cappello F., Chen Z., Algorithm-Based Fault Tolerance
for Convolutional Neural Networks. 2020, 1–13,
DOI: 10.1109/TPDS.2020.3043449.

97

Rizwan Tariq Syed, Markus Ulbricht, Krzysztof Piotrowski, Milos Krstic

Streszczenie: Znaczący rozwój sztucznej inteligencji (SI) wpływa na wiele otaczających nas aplikacji,
do tego stopnia, że SI jest obecnie coraz częściej wykorzystywana w aplikacjach o krytycznym
znaczeniu dla bezpieczeństwa. Sztuczna inteligencja na brzegu sieci (Edge) jest rzeczywistością, co
oznacza wykonywanie obliczeń na danych bliżej źródła danych, w przeciwieństwie do wykonywania ich
w chmurze. Aplikacje o krytycznym znaczeniu dla bezpieczeństwa mają wysokie wymagania dotyczące
niezawodności; dlatego ważne jest, aby modele SI działające na brzegu sieci (tj. sprzęt) spełniały
wymagane standardy bezpieczeństwa. Z rozległej dziedziny sztucznej inteligencji, głębokie sieci
neuronowe (DNN) są centralnym punktem tego badania, ponieważ nadal przynoszą znakomite wyniki
w różnych zastosowaniach, tj. medycznych, motoryzacyjnych, lotniczych, obronnych itp. Tradycyjne
techniki niezawodności implementacji w przypadku DNN nie zawsze są praktyczne, ponieważ nie
wykorzystują unikalnych cech DNN. Co więcej, istotne jest również zrozumienie docelowego sprzętu
brzegowego, ponieważ wpływ usterek może być różny w układach ASIC i FPGA. Dlatego też w niniejszym
przeglądzie najpierw zbadaliśmy wpływ usterek w układach ASIC i FPGA, a następnie staramy się
zapewnić wgląd w ostatnie postępy poczynione w kierunku DNN odpornych na błędy. Omówiliśmy kilka
czynników, które mogą wpływać na niezawodność sieci DNN. Ponadto rozszerzyliśmy tę dyskusję, aby
rzucić światło na wiele najnowocześniejszych technik ograniczania błędów w sieciach DNN.

Słowa kluczowe: odporność na błędy, niezawodność, układy FPGA, układy ASIC, sieci neuronowe

Przegląd metod zapewniających odporność na błędy
dla głębokich sieci neuronowych

Rizwan Tariq Syed, MSc, Eng.
syed@ihp-microelectronics.com
ORCID: 0000-0001-9232-734X

He completed his Bachelor’s in Industrial Elec-
tronics from the Institute of Industrial Electronics
Engineering (affiliated with NED UET), Karachi,
Pakistan. He has further received his Master’s Degree in Masters of Science in
Communication Engineering (MSCE) from Technical University Munich, Germany.
Since 2017, he has been with IHP, Frankfurt (Oder), Germany, where he works as
a Research Scientist in the ‚System Architectures’ department. For the last few
years, his work has been mainly focused on fault-tolerant and reconfigurable AI
Accelerators on FPGAs. He has been involved in many research and development
projects at IHP (EMPHASE, Space Region, Open6G Hub).

Krzysztof Piotrowski, PhD, Eng.
piotrowski@ihp-microelectronics.com
ORCID: 0000-0002-7231-6704

He received his Master degree in Computer Science
from the University of Zielona Gora in Poland in
2004. Since then, he is with the IHP in Frankfurt
(Oder) in Germany, where he currently leading the Sensor Networks and Mid-
dleware Platforms (SMP) group in the Wireless Systems department. In 2011 he
received his PhD in Computer Science from the Brandenburg University of Tech-
nology Cottbus-Senftenberg, in Germany. Since 2019 he is leading the joint lab on
Distributed Measurement Systems and Wireless Sensor Networks with the Uni-
versity of Zielona Gora. His research interests include distributed data handling
and storage with the focus on privacy and security issues and resource-constra-
ined devices - wireless sensor networks. He was coordinating the EU FP7 project
e-balance and the INTERREG project SmartGrid Plattform and is responsible for
SmartGrid and SmartCity related research within the SMP group at the IHP. He
is also coordinating the INTERREG project SmartRiver with the focus on wire-
less sensor networks and distributed data storage and processing. He published
more than 80 refereed technical articles and is/was active in several European
and national (German) research projects.

Markus Ulbricht, PhD, Eng.
ulbricht@ihp-microelectronics.com
ORCID: ORCID: 0000-0001-9230-640X

He received his doctorate degree from Branden-
burg University Cottbus-Senftenberg in 2014 on
the topic of „Systematic lifetime-optimization of
highly integrated systems on the basis of nano-structures by means of stress
optimization and self-repair”. In the following two years, he collected thorough
experience as a test engineer at Intel Communications GmbH in Munich. To have
a stronger focus on his scientific career, he transferred to IHP in 2016, where his
first projects involved backend HDL design and the design and implementation
of a fault-tolerant radar platform for distance measurements for automated dri-
ving. As of 2020, he is leading the fault-tolerant computing group with a strong
focus on sensory platforms, open-source hardware, reliable computing, and neu-
romorphic processing systems.

Prof. Milos Krstic, PhD, Eng.
krstic@ihp-microelectronics.com
ORCID: 0000-0003-0267-0203

He received the Dr-Ing. degree in electronics from
Brandenburg University of Technology, Cottbus,
Germany in 2006. Since 2001 he has been with
IHP, Frankfurt (Oder), Germany, where he leads the department System Archi-
tectures. From 2016 he is also professor for “Design and Test Methodology” at
the University of Potsdam. For the last few years, his work was mainly focused
on fault tolerant architectures and design methodologies for digital systems inte-
gration. Prof. Krstic has been managing many international and national R & D
projects. He is also leading and coordinating space activities at IHP. He has publi-
shed more than 250 journal and conference papers, and registered 12 patents.

98

A Survey on Fault-Tolerant Methodologies for Deep Neural Networks

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 2/2023

