Vector Analysis of Electrical Networks for Temperature Measurement of MOS Power Transistors

eng Article in English DOI: 10.14313/PAR_242/83

send Błażej Torzyk , Bogusław Więcek Lodz University of Technology, Institute of Electronics, Al. Politechniki 10, B-9 building, 93-590 Lodz, Poland

Download Article

Abstract

The article presents the concept of using VNA (Vector Network Analyzer) to measure the temperature of the MOS transistor junction. The method assumes that the scattering parameters of the network consisting of the transistor depend on the temperature. The tests confirmed the influence of temperature on the S11 parameter and the input network capacity during ambient temperature changes in the range of 35–70 °C. Measurements were made for the gate-source (G-S) input of the system. The measurements were carried-out with the transistor in the ON/OFF states. In order to validate the measurements, the temperature of the tested element was recorded with the MWIR Cedip-Titanium thermal imaging camera.

Keywords

electrical impedance, IR camera measurement, MOS transistor, S-parameter, Vector Network Analyzer

Zastosowanie analizy wektorowej sieci elektrycznych do pomiaru temperatury tranzystorów MOS

Streszczenie

W artykule przedstawiono koncepcję wykorzystania wektorowego analizatora sieci VNA (ang. Vector Network Analyzer) do pomiaru temperatury złącza tranzystora MOS. Metoda zakłada, że parametry rozpraszania sieci elektrycznych wewnętrznych struktur tranzystora zależą od temperatury. Badania potwierdziły wpływ temperatury na parametr S11 oraz na pojemność wejściową przy zmianie wartości temperatury otoczenia w zakresie 35–70 °C. Pomiary wykonano dla wejścia bramka-źródło (G-S) układu. Pomiary przeprowadzono z tranzystorem w stanach ON/OFF. W celu walidacji pomiarów, temperaturę badanego elementu rejestrowano kamerą termowizyjną MWIR Cedip-Titanium.

Słowa kluczowe

impedancja elektryczna, parametry rozpraszania, parametry S, pomiary termowizyjne, temperatura, tranzystor MOS, VNA, Wektorowy Analizator Sieci

Bibliography

  1. Williams R.K., Darwish M.N., Blanchard R.A., Siemieniec R., Rutter P., Kawaguch Y., The trench power MOSFET: Part I – History, technology, and prospects, “IEEE Transactions on Electron Devices”, Vol. 64, No. 3, 2017, 674–691, DOI: 10.1109/TED.2017.2653239.
  2. Pangallo G., Rao S., Adinolfi G., Graditi G., Della Corte F.G., Power MOSFET Intrinsic Diode as a Highly Linear Junction Temperature Sensor, “IEEE Sensor Journal”, Vol. 19, No. 23, 2019, 11034–11040, DOI: 10.1109/JSEN.2019.2935550.
  3. Blackburn D., Berning D., Power MOSFET temperature measurements, Proceedings of IEEE Power Electronic Specialists Conference, 1982, 400–407, DOI: 10.1109/PESC.1982.7072436.
  4. Wenger Y., Meinerzhagen B., Low-Voltage Current and Voltage Reference Design Based on the MOSFET ZTC Effect, “IEEE Transactions on Circuits and Systems”, Vol. 66, No. 9, 2019, 3445–3456, DOI: 10.1109/TCSI.2019.2925266.
  5. Niu H., Lorenz R.D., Sensing Power MOSFET Junction Temperature Using Gate Drive Turn-On Current Transient Properties. November 2015, “IEEE Transactions on Industry Applications”, Vol. 52, No. 2, 2015, 1677–1687, DOI: 10.1109/TIA.2015.2497202.
  6. Bonaguide G., Jarvis N., The VNA Applications Handbook, Artech House 2019.
  7. Dunsmore J.P., Handbook of Microwave Component Measurement: with Advanced VNA Techniques, 2nd Edition, Wiley, May 2020.
  8. Heddallikar A., Pinto R., Prasadh S.S., A Comparative Analysis of Dielectric Fill Material for X Band Antenna and Subsystem using Scattering Parameters, 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC), October 2019, DOI: 10.1109/IMaRC.2018.8877254.
  9. Zhipeng Wu, Software VNA and Microwave Network Design and Characterisation, Wiley, September 2007.
  10. Berthou M., Godignom P., Millan J., Monolithically Integrated Temperature Sensor in Silicon Carbide Power MOSFETs, IEEE Transactions on Power Electronics, Vol. 29, No. 9, 2014, 4970–4977, DOI: 10.1109/TPEL.2013.2289013.
  11. Zwerver H.J., LTspice built in VDMOS model, 04 Dec 2006, http://www.magma.ca/~legg/SR5/LTspice_built_in_ VDMOS_model.pdf.
  12. Szekely V., Ress S., Poppe A., Török S., Magyari D., Benedek Z., Torki K., Courtois B., Rencz M., New approaches in the transient thermal measurements. “Microelectronics Journal”, Elsevier, Vol. 31, No. 9–10, October, 2000, 727–733, DOI: 10.1016/S0026-2692(00)00051-3.
  13. Application Note, July 2018, https://toshiba.semicon-storage.com/info/docget.jsp?did=134