
Zezwala się na korzystanie z artykułu na warunkach
licencji Creative Commons Uznanie autorstwa 3.0

1. Introduction

Nowadays the development of a software for industrial appli-
cations faces an increasing complexity of problems, including
integration of many additional functions, such as safety, com-
munications, visualization etc., next to the “ordinary” control
task [19, 6]. Traditional engineering practices, where software
is developed and coded without modeling, might be considered
obsolete, due to their inability to allow the developer to easily
produce an error-free control software that matches the resources
of the modern hardware [19]. Furthermore, as engineering costs
dominate the project costs of an automation system [6] and the
time-to-market should be reduced as much as possible [10, 13],
an approach for efficient engineering is even more prominent.

To successfully meet the constantly growing requirements to
the capabilities of the industrial control systems, it is important
to correctly understand and appropriately apply the following
design technologies:

 − Domain specific modeling of the control system an important
shift in the industrial practice is the adoption of the model-
-based design [13]. There are two main approaches. The first
has been initiated in nineties by creating UML – an universal

modeling language that has become a standard for software
specification and has influenced the research in software engi-
neering (examples of such research could be found in [19,
11, 16, 7, 12, 3]). One can say that UML has initiated the
model-driven software engineering (MDSE). The second is the
compositional approach which has grown out of the domain-
-specific language development. It uses visual specifications as
input and is represented by tools like MetaEdit+ and CoCo-
ViLa [18]. Since every field of expertise defines the same con-
trol system from a different point of view using its own lexicon,
syntax and semantics [4], using the compositional approach
tends to be more suitable from the industrial software deve-
loper’s point of view.
 − Automatic generation of the PLC source code and the project
documentation
 − Out of any doubt, the development of both the domain spe-
cific languages and the models themselves requires a certain
degree of creativity, hence it could be regarded as a software
tool-supported process, in which however, a human plays the
central role. On the other hand, the code generation out of
the developed models might be done following a formal set of
rules, which allows for a complete automation of the sourcing
process. This way the computers take the central role in that
particular part of the system design [13].
The need for creating a PLC software, which is comprised of

reusable components, is emphasized by many authors [6, 19, 7,
2, 20, 3, 5]. Once created, those components could be used in
different projects with minimal or no modifications at all. For
this purpose it is necessary for the developer to achieve mod-
ularity of the software through appropriate structuring of its
source code, which could be accomplished applying the princi-
ples of object-oriented programming. With regard to this, one

Autor korespondujący:
Krzysztof Pietrusewicz, krzysztof.pietrusewicz@zut.edu.pl

Artykuł recenzowany
nadesłany 9.10.2015 r., przyjęty do druku 19.11.2015 r.

Meta-Modeling and Automatic Code Generation
for Computer Aided Development of Logic
Control Systems
Michael Scopchanov, Krzysztof Pietrusewicz, Hristo Hristoskov
West Pomeranian University of Technology, Department of Industrial Automation and Robotics, al. Piastów 17, 70-313 Szczecin

Abstract: This article discusses some aspects of the computer aided development of logic control
systems, namely the creation of a meta-model, a domain specific language serving as a base
for the system modeling, as well as the formal rules for automatic transformation of the models
designed by the experts using this meta-model into simulation models, a source PLC code and
the relevant documentation. The problem is defined and proved as important from the point of view of
the contemporary industrial software development in order to achieve more readable designs, which
are later easier to be modified, to shorten the system development time, to obtain a fast proof-of-
concept and to lessen the possibility of having errors in the design. Furthermore, some directions are
pointed out regarding the possible future extension of the used techniques towards automatic testing
and validation of the developed logic control systems.

Keywords: automatic code generation, domain specific modeling, logic control systems, meta-modeling

27

Pomiary Automatyka Robotyka, R. 19, Nr 4/2015, 27–32, DOI: 10.14313/PAR_218/27

of the major changes in IEC 61131–3:2013 is the addition of an
extension that allows functional blocks to have object-oriented
features [21]. Furthermore, the ongoing technological innovation
now allows the PLCs to handle the communication with the
other devices in the automation system, as well as to perform
safety and motion control tasks next to the standard control
program. Thus, the demand for additional, problem-oriented
functions that can be programmed according to IEC 61131 has
grown steadily over the last few years. [15]

Another advantage of using meta-modeling and automatic
code generation is the increase in the level of abstraction in the
system design process [8, 1, 17]. Thus, the developers are able
to concentrate on the concept instead of its implementation [14,
2]. However, the generated code might become bulkier, so an
optimization phase is also necessary [2]. As a consequence the
developer of the target source code generator should be also able
to inspect code, understand optimizations and verify low level
fixed point bit operations [13].

2. Problem Definition

Figure 1 depicts a concept in which the previously discussed
techniques, namely domain specific modeling and automatic code
generation, are utilized.

The knowledge of the experts needs to be extracted and pro-
vided as computer readable rules, in a form of a model [6], the
structure and semantics of which are defined by a so called meta-
model [1]. Considering the development of an automation project
however, there are typically different engineers or technicians
involved with different qualification levels and subjects. Thus, the
notation has to be easily recognizable for specialists from a wide
range of professional fields, including process, mechanical and
electrical engineering. A more visionary requirement is to support
the entire life cycle with one consistent model, but appropriate
notation for each phase of the project [19]. Those specifics make
the domain specific modeling more suitable for the development
of an industrial software compared to the utilization of general
modeling language.

Once the model is created it needs to be converted to a for-
mat which specifies the project’s hardware setup, the program
code, the associated elements of the graphical user interface, the
documentation etc. It is very important that this conversion is
accomplished in a way that doesn’t imply manual code writing
[5]. Instead, a tool is supposed to generate all the necessary files
automatically and provide them in such form that they could
be directly imported in the correspondent conventional develop-
ment environment [19].

A commonly used methods and tools for accomplishing some
of the aspects of the presented concept are:

 − Process specification – various techniques for process specifi-
cations are in use today, like automata, cycle time diagrams,
flow charts, Grafcet, project network techniques, Petri nets,
state charts, SFC, UML–PA, etc. [6, 5, 3];
 −Graphical user interface development – several frameworks
have been widely accepted for that purpose based on a data
flow modeling and a visual programming interface. The best
known frameworks with these goals are the LabVIEW and
MATLAB/Simulink frameworks. In addition, several other
commercial available packages are ready for use to manage
the monitoring of distributed processes, namely, supervisory,
control, and data acquisition (SCADA) systems [5];
 − PLC code generation – the object-oriented extension of the
IEC 61131–3 in combination with a CoDeSys UML plug–in,
which includes an IEC 61131–3 code generator for UML class
diagrams, state charts and activity diagrams, is considered
as trend-setting and suitable for industrial environment [3].
In summary, the discussed problem could be stated as: Defini-

tion and software implementation of formal rules for automatic
transformation of the expert knowledge provided in the form of
a domain specific language based model into a simulation model,
a source PLC code and the relevant documentation.

3. Control System Layering

Having one flat model representing all the aspects of the mod-
eled logic control system is not always convenient. For example,
when the project starts to grow bigger in size and complexity
such approach may slow down the work and lead to errors. Fur-
thermore, it is harder for several people or group of people to
work simultaneously on one model, focusing on their own part.
To overcome the mentioned drawbacks some modularity should
be introduced, i.e. the model should be divided into layers. The
proposed layout of the logic control system is shown in fig. 2.

For each automated process or machine only one hardware con-
figuration layer exists in the model containing all the devices used
in the particular project. However, depending on the number of
the used programmable logic controllers and the structure of their
software, several software configuration layers may be present
with their corresponding algorithm definitions and interlock logic.

On each layer only the relevant information should be dis-
played and be accessible to the modeler. For example on the
software definition layer and the layers bellow it no device spe-
cific information should be present, hence allowing the work to
be performed on a higher, conceptual level, independent from
the device vendor and the particular implementation. The goal
is to leave as much hardware settings as possible to be done by
the code generators, which has the following advantages:

Meta-model

Expert
knowledge

Text �les

Si
m

ul
at

io
n

Pr
og

ra
m

D
oc

um
en

ta
tio

n

External tools

ModelGenerators

Software
con�guration

Algorithms
de�nition

Interlock logic

Hardware
con�guration

Fig. 2. Logic control system layers
Rys. 2. Warstwy systemu sterowania logicznego

Fig. 1. Automatic code generation concept
Rys. 1. Koncepcja automatycznego
generowania kodu

28

Meta-Modeling and Automatic Code Generation for Computer Aided Development of Logic Control Systems

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 4/2015

 − the less information needs to be entered manually, the less
room for error exists and the faster the system could be ready
for testing. The last is of particular importance with regard
to the rapid prototyping and the fast achievement of the so
called proof-of-concept;
 − the control system could be ported to different PLC types
using an appropriate code generator and leaving the already
created model intact.
Having the control system represented in such a structured

way makes finding information and modifying the model a lot
easier in big projects. Moreover, the work could be divided and
distributed across several teams, which increases the effective-
ness and additionally shortens the time needed for control sys-
tem development.

4. Meta-Model Concepts

To adequately model all of the aspects of the logic control sys-
tem, a proper meta-model should be developed first. It starts
with the definition of the objects in each layer and their parame-
ters. Then the relations between those objects should be defined
as well as the necessary constraints regarding the created mod-
els.

All concepts in the meta-model have their corresponding sym-
bols. The examples presented here use custom symbols, built
with space reduction and readability improvement in mind.
However, since the graphical design is a science by itself, which is
beyond the scope of this article, it will not be discussed further.

A. Hardware Configuration
This layer consists of the following objects:

 − Sensor – aims to model the physical signals which enter the
control system, e.g. the ones from the sensors, switches and but-
tons. Parameters include the name of the signal, the designa-
tion on the schematics, a description and the active logic level;
 − PLC – represents a programmable logic controller, the device
which executes the control program. The parameters include
name and description;
 − Actuator – models the physical signals which exit the control
system, e.g. the ones sent to the actuators and lamps. Param-
eters include the name of the signal, the designation on the
schematics, a description and the active logic level.
To interconnect the objects on this layer two types of relations

are used: wired connection and communication link. The first
one has no parameters and the second one is parametrized with
respect to the requirements of the selected network type.

B. Software Configuration
The Software Configuration Layer serves as a top-level program
model for each PLC present in the hardware structure of the
control system (see fig. 3). On this layer the following objects
are presented:

 − Digital input,
 − Sequence,
 − Timer,
 − Logic block,
 − Mode selector,
 − Interlock,
 − Digital output.
The Digital input and Digital output objects represent the

digital I/O modules of the PLC. The address mapping could
be manual or automatic depending on the application. A good
idea is to assign a default value for the address of each input
and output pin and allow the user to change it later if necessary.
The Sequence is a model of the control algorithm. It is further
decomposed in another layer by its own.

Error monitoring is modeled using Timer for the time mon-
itoring and Logic block for the state monitoring. The first one

has time as parameter and the second one – number and polar-
ity of its inputs.

The Mode selector is a switch which enables/disables the direct
connection between the inputs from the manual controls and the
outputs to the actuators.

The Interlock models the internal safety logic preventing the
activation/deactivation of particular output when given safety
conditions are not met. This object is decomposed in another
layer by its own.

To interconnect the objects on this layer only one relation
type is used, i.e. wired connection, which has no parameters.
There are no restrictions regarding the occurrence of the objects
in the model.

C. Algorithm Definition
The Algorithm Definition Layer allows the modeler to create
the sequences for the automatic mode of operation of the logic
control system. Only one type of object is accessible – a state
with associated actions list (activation/deactivation of outputs
and start of time delays).

There are two types of relations:
 −Transition – connects two states designating the conditions
under which the transition from the currently active one to
the next one should be made. An important restriction here is
that two or more relations of this type starting from the same
state should not have the same or logically equal conditions;
 −Synchronization – introduces an additional condition to be
fulfilled for the transition from one state to another to be
executed, i.e. when a particular state from another sequence
is active. That way a synchronization between simultaneously
running sequences could be achieved.

D. Interlock Logic
The purpose of the Interlock Logic Layer is to allow the modeler
to define the conditions under which a particular output should
remain interlocked in a given state, either “on” or “off”. The fol-
lowing objects are used to model this behavior:

 − Input,
 − Logic AND,
 − Logic OR,

Fig. 3. Example top-level software definition
Rys. 3. Przykład definicji oprogramowania wysokiego poziomu

Fig. 4. Example algorithm definition in the form of a state graph
Rys. 4. Przykładowy algorytm sterowania w postaci diagramu maszyny
stanów

29

Michael Scopchanov, Krzysztof Pietrusewicz, Hristo Hristoskov

 − Logic NOT,
 − Output.
Although in the general case it is a good idea to provide

pre-defined logical functions, e.g. flip-flops, next to the basic
ones in order to allow the modeler to create any composite logic
design with a relative ease, as long as it goes about interlocks
the logic is usually not that complex, hence the fully functional
basis formed by the AND, OR and NOT functions is completely
sufficient and there is no need to be further expanded. However,
allowing the modeler to customize the AND and OR functions
defining the number of inputs and having the option to invert
each of the inputs or the output would make the design more
readable, therefore such functionality could be implemented in
the software solution as well.

To interconnect the objects on this layer only one relation type
is used, i.e. wired connection, which has no parameters. The
number of outputs on this layer is limited to one.

5. Automatic Code Generation

Having the control system designed in the previously described
manner, a model is created as a set of interconnected objects
with their respective parameters. This model contains a general
information about the system. However, not all of this informa-
tion is used for the generation of each target file, but a given
sub-set, as shown in fig. 6. In other words different parts of the
graphically represented logic control system are transformed fol-
lowing a given set of rules into different text files according to
the requirements of the particular software product used for sim-
ulation, PLC programming and documentation.

A. Simulation Model
To reduce the development time and costs it is necessary to have
a simulation model of the PLC acting as a software-in-the-loop.
Being widely accepted in the scientific world, Simulink is used as
a simulation environment here as well. The built-in logic blocks of
Simulink together with the Stateflow toolbox allow the adequate
modeling of the program logic. To automatically generate the
simulation model, a MATLAB script is produced, containing the

corresponding commands for creation and modification of Simu-
link models, as well as the Stateflow API commands. An example
of automatically generated control sequence is shown in fig. 7.

The rules for generating the MATLAB script are pretty
straightforward since the discussed meta-model closely resem-
bles the one used by Simulink, i.e. blocks with inputs, outputs
and parameters and connections between them. So the generator
should take care of adding the corresponding blocks to the simu-
lation model at the positions they have in the designed system,
and then parametrize and interconnect them. In turn, the layers
of the system are represented as sub-systems.

B. Source PLC Code
Since the code generators produce text files it is convenient to
use Structured Text (ST) defined in IEC 61131–3 [21] as a pro-
gramming language for the implementation of the software part
of the control system. To illustrate the approach Automation
Studio by BnR is used.

When generating the code the following set of rules is applied:
 − all Sensors and Actuators used in the Hardware configuration
layer are defined as global variables;
 − each State in every Sequence is defined as a global variable in
the form M_XX_Step_N;
 − for each Sequence in the Software configuration layers two
corresponding program units are created named Transitions
and Actions;
 − each relationship of type Transition transforms into lines of
code in the corresponding POU with the following format:

IF M_XX_Step_N THEN
IF <conditions> THEN
M_XX_Step_N+1 := 1;
M_XX_Step_N := 0;
END_IF

END_IF
 − for each Actuator defined in the Hardware configuration layer
a logical equation is written in the Actions program unit con-
taining the OR-ed variables corresponding to the states in
which it is activated, the auto/manual switching logic, as well
as the defined interlock logic;
 − for each Timer a program timer is defined and connected to
the corresponding alarm output;
 − for each Logic block in the Software configuration layer a logi-
cal equation is added to the Actions program unit activating
the corresponding alarm output;
The main program then needs to initialize the used variables

and to call the created sub-programs.

Fig. 5. Example interlock definition using Functional Block Diagram (FBD)
Rys. 5. Przykładowa definicja bloku zabezpieczeń w języku Bloków
Diagramów Funkcyjnych FBD

Fig. 6. Using different parts of the model for the generation of each
target file
Rys. 6. Wykorzystanie różnych części modelu do generowania innego
rodzaju dokumentów

Fig. 7. Example automatic generated Stateflow model
Rys. 7. Przykład automatycznie wygenerowanego modelu Stateflow

30

Meta-Modeling and Automatic Code Generation for Computer Aided Development of Logic Control Systems

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 4/2015

C. Documentation
To obtain a printable document a TEX-file should be gener-
ated and then compiled using pdflatex. The formatting might
be fixed in a template which includes the automatically gen-
erated parts. That way the form of the document might be
changed leaving the actual content intact.

Depending on the particular purpose, the content of the
document might vary largely. However, as a general rule it is
a good idea to include a symbol table, containing a description
of the I/O interface of the control system, as well as tables
listing the designed error monitoring functions and interlocks.
Figures, representing the hardware design, control software
structure and algorithms, should be included in the docu-
mentation as well.

6. Conclusion

The discussed techniques play an essential role in the creation
of computer tools designed to aid the development of logic
control systems. Such tools would allow the creation of well-
-structured, readable control system designs, which are easier
to be modified later. This also shortens the development time,
leads to a fast proof-of-concept and lessens the possibility of
having errors in the design.

The here presented concepts have been implemented and
tested in MetaEdit+ [9]. For practical use however, a stand-
alone application would be a better solution allowing more
flexibility to be achieved through an expandable functionality,
e.g. towards automated checks for compliance of the design
with the relevant standards. With regard to that, in order to
close the development cycle in the mentioned way it is nec-
essary to further extend the current work in the direction of
automatic tests and validation of the created models, bring-
ing simulation and experimental data back into the software
tool for analysis.

Another interesting direction for future research is the inte-
gration of human-machine interface (HMI) and dedicated
safety devices in the model in order to automatically gener-
ate the tags list and the process screens needed for the visu-
alization as well as the safety logic.

Acknowledgments
The subject of this article is part of the project iLoad,
Partnership for developing energy effcient intelligent load
handling system, funded by the European Union Seventh
Framework Programme for research, technological develop-
ment and demonstration under grant agreement No 324496.

Bibliography

1. Baerisch S., Domain-Specific Model-Driven Testing, 1st
edition, GWV Fachverlage GmbH, 2010.

2. Berruet P., Lallican J., Rossi A., Philippe J., Generation
of Control for Conveying Systems Based on Component
Approach, IEEE International Conference on Systems,
Man and Cybernetics, 2007, 1408–1414, DOI: 10.1109/
ICSMC.2007.4413766.

3. Braun S., Obermeier M., Vogel-Heuser B., Usability Chal-
lenges in the Design Workflow of Reusable PLC Software
for Machine and Plant Automation, 9th International
Multi–Conference on Systems, Signals and Devices, 2012,
1–6, DOI: 10.1109/SSD.2012.6198055.

4. Estevez E., Marcos M., Model-Based Validation of Indu-
strial Control Systems, IEEE Transactions on Industrial
Informatics, Vol. 8, No. 2, 2012, 302–310, DOI: 10.1109/
TII.2011.2174248.

5. Gomes L., Lourenco J., Rapid Prototyping of Graphical User
Interfaces for Petri-Net-Based Controllers, IEEE Transac-
tions on Industrial Electronics, Vol. 57, No. 5, 2010, 1806–
1813, DOI: 10.1109/TIE.2009.2031188.

6. Guttel K., Weber P., Fay A., Automatic Generation of PLC
Code Beyond the Nominal Sequence, IEEE International
Conference on Emerging Technologies and Factory Auto-
mation, 2008, 1277–1284, DOI: 10.1109/ETFA.2008.4638565.

7. Iriondo N., Estevez E., Marcos M., Automatic Generation of
the Supervisor Code for Industrial Switched-Mode Systems,
IEEE Transactions on Industrial Informatics, Vol. 9, No. 4,
2013, 1868–1878, DOI: 10.1109/TII.2012.2227491.

8. Jung E., Kapoor C., Batory D., Automatic Code Generation
for Actuator Interfacing from a Declarative Specification,
International Conference on Intelligent Robots and Systems,
2005, 2839–2844, DOI: 10.1109/IROS.2005.1545465.

9. Kelly S., Tolvanen J., Domain-Specific Modeling: Enabling
Full Code Generation, Wiley-IEEE Computer Society Pr,
1th edition, 2008.

10. Krunic M., Letvencuk I., Povazan I., Krunic V., An Appro-
ach to Model Dri krzysztof.pietrusewicz@zut.edu.pl ven Deve-
lopment and Automatic Source Code Generation of GUI
Controls, 11th International Symposium on Intelligent Sys-
tems and Informatics, IEEE, 2013, 63–68, DOI: 10.1109/
SISY.2013.6662544.

11. Kundu D., Samanta D., Mall R., Automatic Code Genera-
tion from Unified Modeling Language Sequence Diagrams,
“Software, IET”, Vol. 7, No. 1, 2013, 12–28, DOI: 10.1049/
iet-sen.2011.0080.

12. Mizuoka K., Koga M., MDA Development of Manufacturing
Execution System Based on Automatic Code Generation,
Proceedings of SICE Annual Conference, 2010, 3103–3106.

13. Mosterman P., Automatic Code Generation: Facilitating
New Teaching Opportunities in Engineering Education, 36th
Annual Frontiers in Education Conference, 2006, 1–6, DOI:
10.1109/FIE.2006.322699.

14. Mozumdar M., Gregoretti F., Lavagno L., Vanzago L., Oli-
vieri S., A Framework for Modeling, Simulation and Auto-
matic Code Generation of Sensor Network Application, 5th
Annual IEEE Communications Society Conference on Sen-
sor, Mesh and Ad Hoc Communications and Networks, 2008,
515–522, DOI: 10.1109/SAHCN.2008.68.

15. Otto A., Hellmann K., IEC 61131: A General Overview and
Emerging Trends, “Industrial Electronics Magazine”, Vol. 3,
No. 4, 2009, 27–31, 10.1109/MIE.2009.934793.

16. Papadopoulos G., Automatic Code Generation: A Practi-
cal Approach, 30th International Conference on Informa-
tion Technology Interfaces, 2008, 861–866, DOI: 10.1109/
ITI.2008.4588524.

17. Santos A., Cardoso J., Diniz P., Ferreira D., Petrov Z., Speci-
fying Dynamic Adaptations for Embedded Applications Using
a DSL, Embedded Systems Letters, IEEE, Vol. 6, No. 3,
2014, 49–52, DOI: 10.1109/LES.2014.2321325.

18. Tyugu E., Grigorenko P., Components in Model-Based
Software Development, Computer Science and Informa-
tion Technologies, 2013, 1–8, DOI: 10.1109/CSITech-
nol.2013.6710367.

19. Vogel-Heuser B., Witsch D., Katzke U., Automatic Code
Generation from a UML Model to IEC 61131–3 and System
Configuration Tools, International Conference on Control
and Automation, Vol. 2, 2005, 1034–1039, DOI: 10.1109/
ICCA.2005.1528274.

20. Werner B., Object-Oriented Extensions for IEC 61131–3,
Industrial Electronics Magazine, IEEE, Vol. 3, No. 4, 2009,
36–39, DOI: 10.1109/MIE.2009.934795.

21. International Electrotechnical Commission – [www.iec.ch].

31

Michael Scopchanov, Krzysztof Pietrusewicz, Hristo Hristoskov

Michael Scopchanov, PhD
Michael.Scopchanov@zut.edu.pl

He is born on October the 11th 1977 in Varna,
Bulgaria. In 2009 he graduated the Technical
University of Varna, Bulgaria, and acquired
a PhD Degree in automatics. His research
interests cover topics from the broad engi-
neering field of the digital control systems,
namely programmable logic controllers,
digital signal processing, machine vision,
mobile robotics, embedded control, meta-
modeling and fuzzy logic. He is a former
associate professor at the Faculty of Com-
puting and Automation of the Technical Uni-
versity of Varna, Bulgaria. Currently he is a member of the iLoad project’s
research team.

Hristo Hristoskov, PhD
hristo.hristoskov@zut.edu.pl

He is born on April the 24th 1983 in Varna,
Bulgaria. In 2009 he graduated the Technical
University of Varna and acquired a Master
degree in automation. His research interests
are in the areas of digital control systems,
industrial communications, programmable
logic controllers and control of robots. Deve-
lops projects for repair and modernization of
machine tools and metalworking machinery
CNC. He is a former assistant professor at
the Faculty of Computing and Automation
of the Technical University of Varna, Bulgaria. Currently he is a member of
the iLoad project’s research team.

Krzysztof Pietrusewicz, PhD, DSc
krzysztof.pietrusewicz@zut.edu.pl

He graduated (MSc Eng.) from Faculty of
Electrical Engineering of West Pomera-
nian University of Technology in Szczecin,
Poland in 2002, where he has been wor-
king as an assistant professor since 2006.
At the same university he gained PhD
(2005) and DSc (2012).He also cooperates
with Cargotec Sweden AB (Applied Rese-
arch Department, HIAB) as a researcher.

Meta-modelowanie oraz automatyczne generowanie kodu
w projektowaniu komputerowym logicznych systemów sterowania

Streszczenie: W artykule omówiono wybrane aspekty rozwoju komputerowego wspomagania
systemów sterowania logicznego, a mianowicie: utworzenie meta-modelu oraz języka konkretnego
obszaru zastosowań, będącego podstawą do modelowania systemu, jak i formalnych zasad
automatycznego przekształcenia modeli zaprojektowanych przez ekspertów za pomocą meta-modelu
do modeli symulacyjnych, kodu źródłowego dla sterowników PLC oraz odpowiedniej do potrzeb
dokumentacji. W artykule zaprezentowana jego istotność z punktu widzenia tworzenia współczesnego
oprogramowania przemysłowego, w celu osiągnięcia bardziej czytelnych wzorów, które następnie
mogą być prosto modyfikowane, co przyczynia się do skrócenia czasu opracowania systemu,
uzyskania tak zwanego proof-of-concept w krótkim czasie tak, aby zminimalizować występowanie
błędów w projekcie. Ponadto, niektóre kierunki są wskazane w odniesieniu do ewentualnego
przyszłego rozszerzenia zakresu stosowanych technik do celów automatycznego testowania
i walidacji opracowanych systemów sterowania logicznego.

Słowa kluczowe: automatyczne generowanie kodu, modelowanie specyficzne dla dziedziny zastosowań, systemy sterowania logicznego, meta-modelowanie

32

Meta-Modeling and Automatic Code Generation for Computer Aided Development of Logic Control Systems

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 4/2015

