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1. Introduction

Depending on the amount of sensing points, optical fiber sensors 
can be defined as single-point, multi-point or distributed sensors. 
Optical fiber sensors can be classified, based on the principle of 
operation, into [1]:
− intensity-modulated, which rely on the measurement of atte-

nuation along the optical fiber, e.g.: micro- and macro-bend
sensors, evanescence wave sensors,

− phase-modulated, which measure the interference of the opti-
cal fibers based on the interferometry principle, e.g.: Mach-
-Zehnder, Michelson, Sagnac and Fabry-Perot interferometers,

− wavelength-modulated, which rely on the measurement of
wavelength variations, e.g.: Fiber Bragg Grating, fluore-
scence sensors,

− polarization-based, which implement the birefringence phe-
nomenon in order to determine the change in the refractive
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index resulting from the change in polarization, e.g.: rotator 
Faraday rotating sensor,

− scattering-based, which implement the light scattering phe-
nomenon in order to measure physical quantities variations
in the optical fiber environment, such as electromagnetic
fields, temperature and strain, e.g.: Rayleigh, Brillouin and
Raman reflectometry.

Distributed optical fiber sensors (DOFS) have been popular
in the past years due to the growing need to perform measure-
ments at long distances with a respectful spatial and measu-
rand resolutions, as well as the relatively simple and low-cost 
construction of the sensing system [2]. One optical fiber can 
replace a huge number of discrete sensors, covering distances 
up to tens of kilometers, providing thousands of measurement 
points depending on the system spatial resolution [3]. Thanks 
to the huge development in optical fibers, their immunity to 
electromagnetic interferences and durability [4, 5], DOFS sys-
tems can easily outperform conventional sensing systems, not 
only by the means of measurements quality, but also by the 
wide spectrum of applications [6–8] that can utilize these sys-
tems, even in the harsh environments [9].

The studies of the backscattered bands: Rayleigh, Brillouin 
and Raman, proved their dependency on the physical changes 
of the optical fiber itself, as well as physical changes in the 
environment around the optical fiber [10]. The measurement 
of the backscattered Rayleigh band can be implemented in 
distributed pressure measurements [11], magnetic fields detec-
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tion [12] or chemicals detection [13]. One may obtain tempe-
rature measurements alongside strain measurements along the 
optical fiber by measuring the backscattered Brillouin band 
[14]. However, the acquirement of only the temperature profile 
along the optical fiber by the measurement of the backscattered 
Raman anti-Stokes band is preferable, thus it is commonly used 
in distributed temperature sensing (DTS) systems [15]. DOFS 
systems are also used in the power cable monitoring [4], struc-
ture health monitoring [16], hydrology [17] and several other 
applications [18]. The DOFS systems measurements are per-
formed in the optical time domain reflectometry (OTDR) [4], 
or in the optical frequency domain reflectometry (OFDR) [19].

The behavior of acoustic waves in optical fibers can be 
influenced by their construction and refractive index profiles, 
which can lead to variations in the Brillouin scattering param-
eters. To examine the behavior of acoustic waves and acous-
to-optic interactions in a limited geometry, it might also be 
helpful to compare the Brillouin gain spectra in various optical 
fibers types [20]. In this paper, two optical fibers are investi-
gated in order to verify the impact of the optical fiber type on 
the quality of the obtained results of a DOFS system based on 
the measurement of the Brillouin backscattered band in the 
time domain. The first one is a standard optical fiber used in 
Fiber To The Home (FTTH) network, while the second is used 
in a long-haul networks due to lower attenuation. Obtained 
results can be handful during the development of FTTH net-
works extended with temperature sensing abilities.

2. Backscattering in optical fibers

In optical fibers, light scattering is caused by the interaction 
between the light photons and the medium particles, and is 
enhanced by the variation of physical properties of the optical 
fiber and the surroundings. Light scattering is either elastic, 
where frequency of incident and the frequency of the scatte-
red photons are equal, or inelastic, where the frequency of the 
scattered photons is shifted to lower (Stokes) or higher (anti-
-Stokes) frequencies [2]. Fig. 1 presents the light scattering
spectrum. Light scatters in every direction. The main princi-
ple in the DOFS systems is the collecting of the backscattered
light spectrum.

While the actual sensing mechanism in Brillouin-based 
DOFS systems relies on the measurement of the Brillouin fre-
quency shift in order to calculate the strain and temperature 
variations, Raman-based DOFS systems measure the intensity 
of the Raman anti-Stokes band, which strongly depends on 
temperature [14]. In Raman-based DOFS systems, one may 
enhance the system’s signal to noise ratio (SNR) by exclud-
ing the attenuation and fiber link losses, which is possible by 
registering the backscattered Rayleigh signals, then applying 
the demodulation algorithm to calculate the ratio between 
the Raman anti-Stokes signals and the Rayleigh signals [21].

Brillouin light scattering (BLS) is an interaction between 
photon and acoustic wave (phonon), where due to the annihi-
lation of a photon of pump laser a Stokes photon and a pho-
non are created [16]. Hence, the frequency of the backscattered 
optical signal BSν  is slightly lower than that of the incident 
light .Pν  The difference in frequency is related to the fre-
quency of emitted phonons. The Brillouin frequency shift can 
be obtained by [22]:
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where effn  is the effective refractive index of optical fiber, av
is the speed of the acoustic wave in the optical fiber, pλ  is the 
wavelength of incident light.

For silica-based optical fiber the value of the initial Brill-
ouin frequency 0Bν  is typically ranging from 9 to 11 GHz for 
1550 nm incident wavelength. The number of Brillouin fre-
quency peaks and their value and intensity depend on the type 
of optical fiber, where the refractive index profile has the most 
influence [23]. The refractive index depends on the temperature 
and strain, due to the thermo-optic and photo-elastic effects, 
respectively. Hence, the Brillouin frequency shift Bν∆  can be 
observed under the influence of temperature or strain changes 
along the length of the fiber [24]:

( ) ( )0 0 0 ,B B TC T T Cεν ν ε ε∆ = + − + − (2)

where 0Bν  is the initial Brillouin frequency, TC  and Cε  are 
the temperature and strain coefficients of optical fiber respec-
tively, T and ε  are the measured temperature and strain 
values respectively, 0T  and 0ε  are the reference temperature 
and strain values respectively. The temperature and strain 
coefficients are different for each optical fiber, resulting from 
the variety of acoustic velocities in different types of optical 
fibers [25]. Hence, a series of experiments must be held in 
order to determine the value of each coefficient for each opti-
cal fiber [26].

In order to distinguish the two measured values, it is nec-
essary to use compensation methods, e.g. the implementation 
of two parallel fiber optic lines, one of which will not be sus-
ceptible to any stresses, or the implementation of optical fiber 
with different temperature and strain coefficients.

3. Measurement setup

In order to verify the impact of the optical fiber type and 
parameters, the measurement setup shown in Fig. 2 is built. 
The optical system consists of OZOptics DSTS unit, which is 
a Brillouin Optical Time Domain Reflectometer (BOTDR), 
operating at the wavelength of 1550 nm [27]. The wavelength 
of the laser used in this unit is 1550 nm. This unit allows the 
setting of the desired spatial resolution through the setting 
of the input laser pulse duration. The optical system is con-
nected with PC unit for data acquisition and analysis. The 
BOTDR unit is connected through the optical fiber jumper 
to the prepared optical path, which includes two types of 
single-mode telecommunication optical fibers: sections 1, 2 
and 3 are G.652.D optical fibers, while section 4 and 5 are 
G.654.C. Sections 2 and 4 are placed in the heat chamber in
order to change their temperature. During the measurements,
the temperature in the heat chamber was set to 20 °C, 40 °C
or 70 °C. As mentioned above, both optical fibers are sin-
gle-mode. However, the second optical fiber type, according

Fig. 1. The backscattered light spectrum
Rys. 1. Spektrum rozproszonego światła
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to ITU-T G.654.C standard is a cut-off shifted optical fiber 
which is used for high bandwidth long distance transmission.

Before the BOTDR tests, the optical fiber path is tested by 
standard reflectometer MaxTester730B by EXFO (wavelength 
1550 nm, laser pulse 10 ns, averaging time 3 min) [28]. This 
reflectometer obtains the results through the measurement of 
the backscattered Rayleigh band. Based on the attenuation as 
a function of time, one may obtain the results of the optical 
losses along the optical path, as well as the actual length of 
each section of the tested optical path. The launch optical fiber 
at the first 160 m is used in order to stabilize the input light 
before entering the actual tested optical path. Then, the G.652.D 
sections optical fibers are visible, which are 160 m long. The 
G.654.C sections are about 100 m long.

4. Results

The first set of measurements involves the examination of the 
pulse width on the Brillouin frequency shift for both types of 

optical fibers. The obtained results for the tested samples are 
presented in Fig. 4. As can be noticed for both optical fibers 
the frequency characteristic is initially wider, and with the 
increasing value of laser pulse width the signal is definitely 
narrower and stronger. Also, the frequency shift is different 
for each optical fiber type. Additionally, the G.652.D opti-
cal fiber has two Brillouin frequencies close to each other. In 
some optical fiber types, this results from the emergence of 
more than one acoustic wave, and as a result it is possible to 
monitor more than one Brillouin frequency shift [29]. Thus, 
implementing the wider input pulses allows obtaining results 
with better quality. The threshold value for both optical fibers 
is higher than 30 ns.

 The second set of measurements involves the examination 
of temperature impact on the Brillouin frequency shift for the 
two types of optical fibers. Fig. 5 presents the Brillouin reflec-
togram for three exemplary different heat chamber temperature 
settings. The temperature tests are conducted based on the 
measurement setup presented in section 3. The measurements 
are conducted for 40 ns laser pulse width, where the dead zone 

Fig. 2. The measurement setup
Rys. 2. Stanowisko pomiarowe

Fig. 3. OTDR reflectogram of tested 
optical fiber path with launch fiber, 
obtained by MAX730B
Rys. 3. Reflektogram OTDR 
badanego toru światłowodu 
wraz z włóknem rozbiegowym, 
uzyskany z wykorzystaniem 
MAX730B

Fig. 4. Brillouin spectrum 
characteristics for both tested 
optical fibers: a) G.652.D and  
b) G.654.C
Rys. 4. Charakterystyki spektrum 
Brillouina dla obu badanych 
włókien światłowodowych: 
a) G.652.D i b) G.654.C
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is equal to about 4 m. This length may increase when the dif-
ference between Brillouin frequencies of two connected optical 
fibers is significant. Such case is visible at 160 m of path length. 
One may notice the temperature impact on the Brillouin fre-
quency shift for the two sections of the optical fiber, which are 
placed in the heat chamber.

The shift of Brillouin characteristics for both optical fibers is 
shown in Fig. 6. The implementation of the 40 ns input laser 
pulses allows obtaining strong and narrow signal. As the tem-
perature increases, the characteristics is drifting towards the 
higher frequencies. The width of the signal remains almost the 
same, whereas its intensity may slightly increase.

 The full temperature tests were conducted in the range from 
–20 °C to 70 °C, where one cycle included the heating and cool-
ing processes. The comparison of temperature coefficients are
presented in Fig. 7. In the case of G.652.D optical fiber the both
peaks were tracking. The frequency shift is highly linear (R2 >
0.997) for both tested samples. The measured temperature coef-
ficient equal to 1.4 MHz/°C was definitely higher for G.654.C

optical fiber. For the standard optical fiber this parameter was 
equal to 1.12 MHz/°C and 1.14 MHz/°C, respectively for the 
left and right peak. 

5. Conclusions

The Brillouin specification for telecom optical fibers varies 
depending on its type. Moreover, the signal intensity response 
and its spectral width are related to the laser pulse width. 
For the tested fibers, the threshold value of this parameter 
was higher than 30 ns. Based on temperature cycle measu-
rements, the G.654.C type optical fiber, according to ITU-T 
standard, has more potential to be used in sensor applications 
due to definitely higher temperature coefficient in comparison 
to sample of G.652.D optical fiber. The obtained value equals 
to 1.4 MHz/°C for G.654.C fiber may be useful in realization 
of parallel channel for temperature compensation purposes 
during strain measurements.

Fig. 5. BOTDR reflectogram 
of tested optical fiber path 
(without launch fiber)
Rys. 5. Reflektogram BOTDR 
badanego toru światłowodowego 
(bez włókna rozbiegowego)

Fig. 6. Dependence of Brillouin 
frequency shift on temperature 
for a) G.652.D and b) G.654.C 
optical fibers
Rys. 6. Zależność przesunięcia 
częstotliwości Brillouina od 
temperatury dla włókien 
światłowodowych a) G.652.D 
i b) G.654.C

Fig. 7. The temperature cycles 
results for a) G.652.D fiber left 
peak and b) G.652.D fiber right 
peak, and c) G.654.C fiber
Rys. 7. Wyniki krzywej 
temperatury badanych cykli 
nagrzewania i chłodzenia dla 
włókien światłowodowych 
a) G.652.D lewy szczyt
b) G.652.D prawy szczyt, 
i c) G.654.C 
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Streszczenie: W artykule przedstawiono możliwości wykorzystania rozłożonych czujników 
światłowodowych do uzyskania rozkładu temperatury wzdłuż toru optycznego wykonanego 
z telekomunikacyjnego włókna światłowodowego. Obserwowany jest również wpływ rodzaju włókna 
światłowodowego na pomiary temperatury. Przetestowano dwa rodzaje włókien światłowodowych: 
standardowe G.652.D oraz o niskiej stratności G.654.C. Systemy DOFS do pomiarów temperatury 
wykorzystują zjawisko wstecznych rozpraszania Ramana lub Brillouina. W przypadku systemów 
bazujących na zjawisku Brillouina, właściwości spektralne zależą od rodzaju włókna optycznego oraz 
jego parametrów. Przesunięcie częstotliwości Brillouina zależy od temperatury wokół włókna oraz 
nałożonego na włókno naprężenia. Przedstawione wyniki pokazują, że współczynnik temperaturowy 
może również różnić się w zależności od rodzaju włókna optycznego. Dla standardowego włókna 
światłowodowego G.652.D, współczynnik temperaturowy wynosi 1,12 MHz/°C lub 1,14 MHz/°C 
w zależności od śledzonych szczytów, podczas gdy dla włókna o niskiej stratności G.654.C 
wynosi 1,4 MHz/°C.

Słowa kluczowe: światłowód, DOFS, OTDR, rozpraszanie Brillouina 

Wpływ typu światłowodu na pomiar temperatury w systemach 
rozłożonych czujników światłowodowych   
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