Wpływ wybranych wskaźników jakości regulacji na parametry sygnału sterującego w układzie z regulatorem PID

pol Artykuł w języku polskim DOI: 10.14313/PAR_231/31

Maciej J. Pawliński, Sebastian Plamowski, wyślij Paweł D. Domański Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych, Instytut Automatyki i Informatyki Stosowanej

Pobierz Artykuł

Streszczenie

Praca ma na celu zbadanie i porównanie regulatorów PID o parametrach uzyskanych w wyniku optymalizacji wybranych wskaźników jakości pod kątem właściwości generowanych sygnałów sterujących. Punktem wyjścia do analizy są symulacje przeprowadzone w środowisku MATLAB przeprowadzone dla pięciu obiektów (z czterech klas) na sześciu typach wskaźników. Przedstawiono w szczegółach zastosowane metody i wykorzystane algorytmy. W pracy prezentowane są otrzymane w trakcie optymalizacji nastawy regulatorów PID, przebiegi sygnałów procesowych w badanych układach regulacji oraz obliczone parametry sygnałów sterujących, a także sformułowane na podstawie badań obserwacje i wnioski.

Słowa kluczowe

ocena jakości, optymalizacja, regulacja PID, sygnał sterujący, wskaźniki jakości

Influence of the Selected Indicators on the Parameters of the Control Signal in the System with the PID Controller

Abstract

The goal of this thesis is to assess and compare PID controllers with parameters determined by minimizing select performance indices paying special attention to the attributes of their output signals. Analysis is based on simulations performed using MATLAB for four controlled processes classes and six types of indicators. The methods and algorithms used have been presented in detail. Thesis presents results of the simulations, optimized PID parameters, plots of process signals in examined control systems, calculated control signal attributes and formulated based on experiments observations and conclusions.

Keywords

controller output signal, optimization, performance assessment, performance indices, PID control

Bibliografia

  1. Åström K.J., Computer control of a paper machine – an application of linear stochastic control theory, “IBM Journal of Research and Development”, Vol. 11, No. 4, 1967, 389–405, DOI: 10.1147/rd.114.0389.
  2. Åström K.J., Hägglund T., Benchmark Systems for PID Control, “IFAC Proceedings Volumes”, Vol. 33, No. 4, 2000, 165–166, DOI: 10.1016/S1474-6670(17)38238-1.
  3. Bauer M., Horch A., Xie L., Jelali M., Thornhill N., The current state of control loop performance monitoring – a survey of application in industry, “Journal of Process Control”, Vol. 38, 2016, 1–10, DOI: 10.1016/j.jprocont.2015.11.002.
  4. Choudhury M.A.A.S., Shah S.L., Thornhill N.F., Diagnosis of Process Nonlinearities and Valve Stiction. Advances in Industrial Control. Springer Berlin Heidelberg, 2008.
  5. Domański P.D., Non-Gaussian properties of the real industrial control error in SISO loops, [in:] Proceedings of the 19th International Conference on System Theory, Control and Computing, Cheile Gradistei, Romania, 2015, 877–882, DOI: 10.1109/ICSTCC.2015.7321405.
  6. Domański P.D., Non-Gaussian statistical measures of control performance, “Control and Cybernetics”, Vol. 46, No. 3, 2017, 259–290.
  7. Domański P.D., Golonka S., Jankowski R., Kalbarczyk P., Moszowski B., Control rehabilitation impact on production efficiency of ammonia synthesis installation, “Industrial & Engineering Chemistry Research”, Vol. 55, 2016, 10366–10376, DOI: 10.1021/acs.iecr.6b02907.
  8. Gao X., Yang F., Shang C., Huang D., A review of control loop monitoring and diagnosis: Prospects of controller maintenance in big data era, “Chinese Journal of Chemical Engineering”, Vol. 24, No. 8, 2016, 952–962, DOI: 10.1016/j.cjche.2016.05.039.
  9. Harris T., Assessment of closed loop performance, “The Canadian Journal of Chemical Engineering”, Vol. 67, 1989, 856–861, DOI: 10.1002/cjce.5450670519.
  10. Horch A., Isaksson A.J., A modified index for control performance  assessment, [in:] Proceedings of the 1998 American Control Conference, 1998, 3430–3434, DOI: 10.1109/ACC.1998.703231.
  11. Jelali M., An overview of control performance assessment technology and industrial applications. “Control Engineering Practice”, Vol. 14, No. 5, 2006, 441–466, DOI: 10.1016/j.conengprac.2005.11.005.
  12. Jelali M., Control Performance Management in Industrial Automation: Assessment, Diagnosis and Improvement of Control Loop Performance, Springer-Verlag, London 2013.
  13. Ordys A., Uduehi D., Johnson M.A., Process Control Performance Assessment – From Theory to Implementation.  Springer-Verlag, London 2007.
  14. Paulonis M.A., Cox J.W., A practical approach for largescale controller performance assessment, diagnosis, and improvement, “Journal of Process Control”, Vol. 13, No. 2, 2003, 155–168, DOI: 10.1016/S0959-1524(02)00018-5.
  15. Rousseeuw P.J., Leroy A.M., Robust Regression and Outlier Detection, John Wiley & Sons, Inc., New York, NY, USA, 1987.
  16. Schäfer J., Cinar A., Multivariable MPC system performance assessment, monitoring, and diagnosis. “Journal of Process Control”, Vol. 14, No. 2, 2004, 113–129, DOI: 10.1016/j.jprocont.2003.07.003.
  17. Seborg D.E., Mellichamp D.A., Edgar T.F., Doyle F.J., Process dynamics and control, Wiley, 2010.
  18. Shinskey F.G., How good are our controllers in absolute performance and robustness? “Measurement and Control”, Vol. 23, No. 4, 1990, 114–121, DOI: 10.1177/002029409002300402.
  19. Smuts J.F., Hussey A., Requirements for successfully implementing and sustaining advanced control applications, [in:] Proceedings of the 54th ISA POWID Symposium, Charlotte, North Carolina, USA, 89–105.
  20. Srinivasan B., Spinner T., Rengaswamy R., Control loop performance assessment using detrended fluctuation analysis (DFA), “Automatica”, Vol. 48, No. 7, 2012, 1359–1363, 2012, DOI: 10.1016/j.automatica.2012.04.003.
  21. Starr K.D., Petersen H., Bauer M., Control loop performance monitoring – ABB’s experience over two decades, “IFAC-PapersOnLine”, Vol. 49, No. 7, 2016, 526–532, 11th IFAC Symposium on Dynamics and Control of Process Systems Including Biosystems DYCOPS-CAB 2016, Trondheim, Norway, DOI: 10.1016/j.ifacol.2016.07.396.
  22. Tatjewski P., Sterowanie zaawansowane procesów przemysłowych. Struktury i algorytmy, Akademicka Oficyna Wydawnicza EXIT, Warszawa 2016.
  23. Tolfo F., A methodology to assess the economic returns of advanced control projects. 1983 American Control Conference, IEEE, 1141–1146, DOI: 10.23919/ACC.1983.4788287.
  24. Verboven S., Hubert M., LIBRA: a MATLAB library for robust analysis, “Chemometrics and Intelligent Laboratory Systems”, Vol. 75, No. 2, 2005, 127–136, DOI: 10.1016/j.chemolab.2004.06.003.
  25. Veronesi M., Visioli A., An industrial application of a performance assessment and retuning technique for PI controllers, “ISA Transactions”, Vol. 49, No. 2, 2010, 244–248, DOI: 10.1016/j.isatra.2009.11.008.
  26. DeVries W., Wu S., Evaluation of process control effectiveness and diagnosis of variation in paper basis weight via multivariate time-series analysis. “IEEE Transactions on Automatic Control”, Vol. 23, No. 4, 1978, 702–708, DOI: 10.1109/TAC.1978.1101828.
  27. Zhuo H., Research of performance assessment and monitoring for multivariate model predictive control system. [in:] 4th International Conference on Computer Science & Education, 2009, 509–514, DOI: 10.1109/ICCSE.2009.5228377.