The Research on Exoskeletons with Focus on the Locomotion Support

eng Artykuł w języku angielskim DOI: 10.14313/PAR_236/17

wyślij Jikun Wang*, Linwei Lyu** * Warsaw University of Technology, Faculty of Mechatronics ** Tianjin University of Technology, China

Pobierz Artykuł


This paper summarizes the research on exoskeletons focusing on locomotion support and presenting their general features including the general control approaches. The major fields of exoskeleton applications are focused, namely the military and medical fields. The results of our research on muscles activation during human walking are shortly described. The current developmental trends are outlined in the conclusions part.


EMG, gait analysis, lower limb exoskeleton

Badania nad egzoszkieletami zorientowane na wspomaganie czynności ruchowych


W niniejszym artykule podsumowano wyniki badań przeprowadzonych nad egzoszkieletami przeznaczonymi do wspomagania czynności ruchowych. Przedstawiono ich główne cechy, a także główne podejścia ich sterowania. Podstawowymi obszarami użycia egzoszkieletów są zastosowania wojskowe i medyczne. Opisano zwięźle wyniki badań nad aktywacją mięśni podczas chodzenia przez człowieka. Obecne trendy rozwojowe przedstawiono w podsumowaniu.

Słowa kluczowe

analiza chodu, egzoszkielet kończyny dolnej, EMG


  1. Ada L., Dean C.M., Vargas J, Ennis S., Mechanically Assisted Walking with Body Weight Support Results in More Independent Walking than Assisted Overground Walking in Non-Ambulatory Patients Early After Stroke: A Systematic Review, “Journal of Physiotherapy”, Vol. 56, No. 3, 2010, 153–161, DOI: 10.1016/S1836-9553(10)70020-5.
  2. Asbeck A., De Rossi S.M.M., Holt K.G., Walsh C.J., A Biologically Inspired Soft Exosuit for Walking Assistance, “The International Journal of Robotics Research”, Vol. 34, No. 6, 2015, 744–762.
  3. Barroso F., Santos C., Moreno J.C., Influence of the Robotic Exoskeleton Lokomat on the Control of Human Gait: An Electromyographic and Kinematic Analysis, IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG), Braga, 2013, DOI: 10.1109/ENBENG.2013.6518442.
  4. Beyl P., Van Damme M., Van Ham R., Vanderborght B., Lefeber D., Pleated Pneumatic Artificial Muscle-Based Actuator System as a Torque Source for Compliant Lower Limb Exoskeletons, “IEEE/ASME Transactions on Mechatronics”, Vol. 19, No. 3, 2014, 1046–1056, DOI: 10.1109/TMECH.2013.2268942.
  5. Chen J., Mu X., Du F., Biomechanics Analysis of Human Lower Limb During Walking for Exoskeleton Design, “Journal of Vibroengineering”, Vol. 19, No. 7, 2017, 5527–5539, DOI: 10.21595/jve.2017.18459.
  6. Dhindsa I.S., Agarwal R., Ryait H.S., A Novel Algorithm to Predict Knee Angle from EMG Signals for Controlling a Lower Limb Exoskeleton, CEUR Workshop Proceedings, 2016, 536–541, DOI: 10.18287/1613-0073-2016-1638-536-541.
  7. Di Shi, Wuxiang Zhang, Wei Zhang, Xilun Ding, A Review on Lower Limb Rehabilitation Exoskeleton Robots, “Chinese Journal of Mechanical Engineering”, Vol. 32, No. 74, 2019, DOI: 10.1186/s10033-019-0389-8.
  8. Dollar A.M., Herr H., Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art, “IEEE Transactions on Robotics”, Vol. 24, No.1, 2008, 144–158, DOI: 10.1109/TRO.2008.915453.
  9. Gardner A.D., Potgieter J., Noble F.K., A Review of Commercially Available Exoskeletons’ Capabilities, 24th International Conference on Mechatronics and Machine Vision in Practice, 2017, DOI: 10.1109/M2VIP.2017.8211470.
  10. Guizzo E., Goldstein H., The Rise of the Body Bots, “IEEE Spectrum”, Vol. 42, No. 10, 2005.
  21. Kawamoto H., Lee S., Kanbe S., Sankai,Y., Power Assist Method for HAL-3 Using EMG-Based Feedback Controller, IEEE International Conference on Systems, Man and Cybernetics, Vol. 2, 2003, 1648-1653.
  22. Kawamoto H., Sankai Y., Power Assist System HAL-3 for Gait Disorder Person, International Conference on Computers for Handicapped Persons, Helping People Special Needs, Vol. 2398, 2002, 196–203.
  23. Kazerooni H., The Berkeley Lower Extremity Exoskeleton, “Field and Service Robotics”, Springer Tracts in Advanced Robotics, Vol. 25, 2006, 9–15, DOI: 10.1007/978-3-540-33453-8-2.
  24. Lee K., Liu D., Perroud L., Chavarriaga R., Millánn J. R., A Brain-controlled Exoskeleton with Cascaded Event-Related Desynchronization Classifiers, Robotics and Autonomous Systems, Vol. 90, 2017, 15–23, DOI: 10.1016/jarobot.2016.10.068.
  25. Mosher R. S., Handyman to Hardiman, SAE Transactions, Vol. 76, 1968, 588–597, DOI: 10.4271/680088.
  26. Nicholas Y., Apparatus for Facilitating Walking, U.S. Patent 440.684, 1890.
  27. Nicolelis M.A., Brain–machine Interfaces to Restore Motor Function and Probe Neural Circuits, Nature Reviews Neuroscience, Vol. 4, 2003, 417–422.
  28. Ogata T., Abe H., Samura K., Hamada O., Nonaka M., Iwaasa M., Higashi T., Fukuda H., Shiota E., Tsuboi Y., Inoue, T. Hybrid Assistive Limb (HAL) Rehabilitation in Patients with Acute Hemorrhagic Stroke, Neurol Med Chir (Tokyo), Vol. 55, No. 12, 2015, 901–906.
  29. Park S.J., Park C.H., Suit-type Wearable Robot Powered by Shape-memory-alloy-based Fabric Muscle. Scientific Reports, Vol. 9, No. 9157, 2019.
  30. Rea R., Beck C., Rovekamp R., X1: A Robotic Exoskeleton for In-Space Countermeasures and Dynamometry, AIAA SPACE 2013 Conference and Exposition, 2013.
  31. Tariq M., Trivailo P. M., Simic M., EEG-based BCI Control Schemes for Lower-Limb Assistive-Robots, Frontiers in Human Neuroscience, Vol. 12, 2018, 312–336.
  32. Vukobratovic M., Hristic D., Stojiljkovic Z., Development of Active Anthropomorphic Exoskeletons, Medical and Biological Engineering, Vol. 12, No. 1, 1974, 66–80.
  33. Vinoj P. G., Jacob S., Menon V. G., Rajesh S., Khosravi M. R., Brain-Controlled Adaptive Lower Limb Exoskeleton for Rehabilitation of Post-Stroke Paralyzed, IEEE Access 7, 2019, 132628–132648.
  34. Wang J., Zielińska T., Gait Features Analysis Using Artificial Neural Networks - Testing the Footwear Effect, Acta of Bioengineering and Biomechanics, Vol. 19, No. 1, 2017, 17–32.
  35. Yin Y., Human-Machine Force Interactive Interface and Exoskeleton Robot Techniques Based on Biomechanical Model of Skeletal Muscle, Biomechanical Principles on Force Generation and Control of Skeletal Muscle and their Applications in Robotic Exoskeleton, chapter 4, 2019, 117–134.
  36. Zielińska T., Wang J., Two Methods of EMG Analysis for the Purpose of Exoskeletons and Robotic Rehabilitation Devices, ROMANSY 22 – Robot Design, Dynamics and Control, CISM International Centre for Mechanical Sciences, Vol. 584, 2018, 110–117.