Proposed Tasks of Enceladus Missions’ Instrumentation in the Context of Their Astrobiological Goals

eng Artykuł w języku angielskim DOI: 10.14313/PAR_238/47

Katarzyna Kubiak*, wyślij Jan Kotlarz*, Natalia Zalewska**, Urszula Zielenkiewicz*** * Łukasiewicz Research Network – Institute of Aviation ** Space Research Centre of the Polish Academy of Sciences *** Institute of Biochemistry and Biophysics of the Polish Academy of Sciences

Pobierz Artykuł


Enceladus, Saturnian satellite, is a very significant object for astrobiologists due to the presence of liquid water that forms the ice-covered ocean. Water ice geysers escape from the south pole region through cracks in the ice shield. During the Cassini flight, the probe took samples of plumes matter recognizing besides other methane and molecular hydrogen. Since then, hypotheses have been formulated that life forms similar to those found in the Lost City Hydrothermal Field in the Atlantic ocean bottom may occur near Enceladus’ hydrothermal chimneys. In our work, we analyzed the possibility of a microbial factor detection in the Enceladus geysers. We used as model organisms selected extremophiles. We investigated multi-spectral cameras and mass spectrometers intended for use in mission proposals to Enceladus: Enceladus Orbiter, Enceladus Life Finder, The Explorer of Enceladus and Titan and THEO mission. The review pointed that the configuration of mass spectrometers and the proposed parameters of scientific orbits are appropriate for detecting volatile organic compounds corresponding to selected microorganisms such as aldehyde, ethanol, benzene, toluene, indole, or violacein. The possible presence of a microbiological component with physical dimensions in the order of several micrometres can only be observed for areas of geyser formation at their higher density (> 10 ppm) and with the occurrence of the “snowing microbes” phenomenon. We have found that particularly useful optical channels are 780–975 nm, 860–910 nm, and 5.0–5.3 µm.


astrobiology, Enceladus, mass spectrometry, multispectral cameras

Proponowane zadania aparatury misji na Enceladus w kontekście ich celów astrobiologicznych


Enceladus, księżyc Saturna, jest obiektem bardzo ważnym dla astrobiologów ze względu na obecność ciekłej wody, która tworzy ocean pokryty lodem. Gejzery lodu wodnego wydobywają się z regionu bieguna południowego przez pęknięcia w pokrywie lodowej. Sonda Cassini pobrała podczas lotu próbki pióropusza, rozpoznając, między innymi, metan i wodór cząsteczkowy. Od tamtej pory sformułowano hipotezy, że w pobliżu hydrotermalnych kominów Enceladusa mogą występować formy życia podobne do występujących w polu hydrotermalnym Lost City na dnie Atlantyku. W naszej pracy przeanalizowaliśmy możliwość wykrycia czynnika mikrobiologicznego w gejzerach Enceladusa. Posłużyliśmy się wybranymi ekstremofilami jako organizmami modelowymi. Przebadaliśmy kamery wielospektralne i spektrometry masowe przeznaczone do wykorzystania w proponowanych misjach do Enceladusa: Enceladus Orbiter, Enceladus Life Finder, The Explorer of Enceladus and Titan oraz misji THEO. Ich przegląd wykazał, że konfiguracja spektrometrów masowych oraz proponowane parametry orbit są odpowiednie do wykrywania lotnych związków organicznych odpowiadających wybranym mikroorganizmom, takich jak aldehyd, etanol, benzen, toluen, indol czy wiolaceina. Ewentualną obecność składnika mikrobiologicznego o wymiarach fizycznych rzędu kilku mikrometrów można zaobserwować jedynie dla obszarów formowania się gejzerów przy ich większej gęstości (>10 ppm) oraz przy występowaniu zjawiska „snowing microbes”. Stwierdziliśmy, że szczególnie przydatne kanały optyczne to 780–975 nm, 860–910 nm oraz 5,0–5,3 µm.

Słowa kluczowe

astrobiologia, Enceladus, kamery wielospektralne, spektrometria mas


  1. Eigenbrode J., Gold R.E., McKay C.P., Hurford T., Davila A., Searching for Life in an Ocean World: The Enceladus Life Signatures and Habitability (ELSAH) mission concept, 2018.
  2. Matson D.L., Castillo-Rogez J.C., Davies A.G., Johnson T.V., Enceladus: A hypothesis for bringing both heat and chemicals to the surface. “Icarus”, Vol. 221, No. 1, 2012, 53–62, DOI: 10.1016/j.icarus.2012.05.031.
  3. Kotlarz J.P., Zalewska N.E., Enceladus’ Plumes Reflectance. Particle-in-Cell Model Parametric Study, Cryovolcanism in the Solar System Workshop, Vol. 2045, 2018.
  4. Glein Ch.R., Baross J.A., Waite J.H. Jr. The pH of Enceladus’ ocean, “Geochimica et Cosmochimica Acta”, Vol. 162, 2015, 202–219, DOI: 10.1016/j.gca.2015.04.017.
  5. Taubner R.-S., et al. Biological methane production under putative Enceladus-like conditions. “Nature communications”, Vol. 9, No. 1, 2018, 1–11, DOI: 10.1038/s41467-018-02876-y.
  6. Kotlarz J., Kubiak K.A., Zalewska N.E., Potential Biological Component of the Enceladus Environment. Kinetic Simulation for the 10 km Thick Ocean Model. LPI Contributions, 2168, 2019.
  7. Brazelton W.J., et al. Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys. Proceedings of the National Academy of Sciences 107.4, 2010, 1612–1617, DOI: 10.1073/pnas.0905369107.
  8. Brazelton W.J., et al. Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. “Applied and Environmental Microbiology”, Vol. 72, No. 9, 2006, 6257–6270, DOI: 10.1128/AEM.00574-06.
  9. Kallmeyer J., ed. Life at Vents and Seeps. Vol. 5. Walter de Gruyter GmbH & Co KG, 2017.
  10. Kiang N.Y., Biosignatures of Exoplanets. (2017).
  11. Saito Takeshi, et al. Hydroxyl radical scavenging ability of bacterioruberin. “Radiation Physics and Chemistry”, Vol. 50, No. 3, 1997, 267–269, DOI: 10.1016/S0969-806X(97)00036-4.
  12. Lemee L., et al. Deinoxanthin: a new carotenoid isolated from Deinococcus radiodurans. “Tetrahedron”, Vol. 53, No. 3, 1997, 919–926, DOI: 10.1016/S0040-4020(96)01036-8.
  13. Rocío G.-R., et al. Role of Cln1 during melanization of Cryptococcus neoformans. “Frontiers in Microbiology”, 2015, DOI: 10.3389/fmicb.2015.00798.
  14. Liu G.Y., Nizet V., Color me bad: microbial pigments as virulence factors. “Trends in Microbiology”, Vol. 17, No. 9, 2009, 406–413, DOI: 10.1016/j.tim.2009.06.006.
  15. Meyer J.-M., Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. “Archives of Microbiology”, Vol. 174, No. 3, 2000, 135–142, DOI: 10.1007/s002030000188.
  16. Bennett J.W., Bentley R., Seeing red: the story of prodigiosin. “Advances in Applied Microbiology”, Vol. 47, 2000, 1–32, DOI: 10.1016/s0065-2164(00)47000-0.
  17. Haddix P.L., Shanks R.M.Q. Prodigiosin pigment of Serratia marcescens is associated with increased biomass production. “Archives of Microbiology”, Vol. 200, No. 7, 2018, 989–999, DOI: 10.1007/s00203-018-1508-0.
  18. Schloss P.D., et al. Psychrotrophic strain of Janthinobacterium lividum from a cold Alaskan soil produces prodigiosin. “DNA and Cell Biology”, Vol. 29, No. 9, 2010, 533–541, DOI: 10.1089/dna.2010.1020.
  19. Cortés-Osorio N., et al. Influence of Environmental Factors on the Production of Violacein Synthesized By Janthinobacterium lividum. “The International Journal Of Engineering and Science”, Vol. 6, No. 12017, 76–83, DOI: 10.9790/1813-0601037683.
  20. Valiadi M., Iglesias-Rodriguez D., Understanding bioluminescence in dinoflagellates – how far have we come? “Microorganisms”, Vol. 1, No. 1, 2013, 3–25, DOI: 10.3390/microorganisms1010003.
  21. Offner S., et al. Structural characteristics of halobacterial gas vesicles. “Microbiology”, Vol. 144, No. 5, 1998, 1331–1342, DOI: 10.1099/00221287-144-5-1331.
  22. Alfonzo A., et al. Effect of salt concentration and extremely halophilic archaea on the safety and quality characteristics of traditional salted anchovies. “Journal of Aquatic Food Product Technology”, Vol. 26, No. 5, 2017, 620–637, DOI: 10.1080/10498850.2016.1251521.
  23. Zahradka K., Deinococcus Radiodurans – a Radiation Resistant Bacterium. 7th Symposium of the Croatian Radiation Protection Associetion, Opatija, Croatia 2008.
  24. Karkowska-Kuleta J., Rapala-Kozik M., Kozik A., Fungi pathogenic to humans: Molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus, “Acta Biochimica Polonica”, Vol. 56, No. 2, 2009, 211–224.
  25. Scotter J.M., et al. Real-time detection of common microbial volatile organic compounds from medically important fungi by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). “Journal of Microbiological Methods”, Vol. 63, No. 2, 2005, 127–134, DOI: 10.1016/j.mimet.2005.02.022.
  26. Nelson K.E., Weinel C., Paulsen I.T., et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. “Environmental Microbiology”, Vol. 4, No. 12, 2002, 799–808, DOI: 10.1046/j.1462-2920.2002.00366.x.
  27. Detchanamurthy S., Gostomski P.A., Biofiltration for treating VOCs: an overview. “Reviews in Environmental Science and Bio/Technology”, Vol. 11, No. 3, 2012, 231–241, DOI: 10.1007/s11157-012-9288-5.
  28. Lee A., et al. Use of Hydrogenophaga pseudoflava penetration to quantitatively assess the impact of filtration parameters for 0.2-micrometer-pore-size filters. “Applied and Environmental Microbiology”, Vol. 76, No. 3, 2010, 695–700, DOI: 10.1128/AEM.01825-09.
  29. Kai M., et al. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. “Archives of microbiology”, Vol. 187, No. 5, 2007, 351–360, DOI: 10.1007/s00203-006-0199-0.
  30. Valdes N., et al. Draft genome sequence of Janthinobacterium lividum strain MTR reveals its mechanism of capnophilic behavior. “Standards in Genomic Sciences”, 2015, DOI: 10.1186/s40793-015-0104-z.
  31. Woodhams D.C., et al. Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. “Microbial Ecology”, Vol. 75, No. 4, 2018, 1049–1062, DOI: 10.1007/s00248-017-1095-7.
  32. Wall D., Dale B., Quaternary calcareous dinoflagellates (Calciodinellidae) and their natural affinities. “Journal of Paleontology”, Vol. 42, No. 6, 1968, 1395–1408.
  33. Dani K.G.S., Loreto F., Trade-off between dimethyl sulfide and isoprene emissions from marine phytoplankton, “Trends in Plant Science”, Vol. 22, No. 5, 2017, 361–372, DOI: 10.1016/j.tplants.2017.01.006.
  34. Srama R., Postberg F., Henkel H., et al. Enceladus Icy Jet Analyzer (ENIJA): Search for life with a high resolution TOF-MS for in situ characterization of high dust density regions. Eur. Planet. Sci. Congr. 2015.
  35. Abplanalp D., et al. A neutral gas mass spectrometer to measure the chemical composition of the stratosphere, “Advances in Space Research”, Vol. 44, No. 7, 2009, 870–878, DOI: 10.1016/j.asr.2009.06.016.
  36. Hofer L., et al. Prototype of the gas chromatograph–mass spectrometer to investigate volatile species in the lunar soil for the Luna-Resurs mission. “Planetary and Space Science”, Vol. 111, 2015, 126–133, DOI: 10.1016/j.pss.2015.03.027.
  37. Spencer J.R., Niebur C., Mission Concept Study: Titan Saturn System Mission. National Aeronautics and Space Administration, 2010.
  38. Reuter D.C., et al. Ralph: A visible/infrared imager for the New Horizons Pluto/Kuiper Belt mission. “Space Science Reviews”, Vol. 140, No. 1–4, 2008, 129–154, DOI: 10.1007/s11214-008-9375-7.
  39. Mitri G., Postberg F., Soderblom J.M., et al. Explorer of Enceladus and Titan (E2T): Investigating ocean worlds’ evolution and habitability in the solar system. “Planetary and Space Science”, Vol. 155, 2018, 73–90, DOI: 10.1016/j.pss.2017.11.001.
  40. Mackenzie S.M., Caswell T.E., Phillips-Lander C.M., et al. THEO concept mission: testing the habitability of Enceladus’s Ocean. “Advances in Space Research”, Vol. 58, No. 6, 2016, 1117–1137, DOI: 10.1016/j.asr.2016.05.037.
  41. Brockwell T.G., Meech K.J., Pickens K., et al. The mass spectrometer for planetary exploration (MASPEX). 2016 IEEE Aerospace Conference, DOI: 10.1109/AERO.2016.7500777.
  42. Lunine J., Waite H., Postberg F., Spilker L., Clark K., Enceladus life finder: the search for life in a habitable moon. EGU General Assembly Conference Abstracts (2015)
  43. Porco C.C., Dones L., Mitchell C., Could it be snowing microbes on Enceladus? Assessing conditions in its plume and implications for future missions, “Astrobiology”, Vol. 17, No. 9, 2017, 876–901, DOI: 10.1089/ast.2017.1665.
  44. Kotlarz J., Zielenkiewicz U., Zalewska N., Kubiak K., Microbial component detection in Enceladus snowing phenomenon; proposed missions instrumentation analysis. EANA Astrobiology Conference 2019.