The Microcontroller Implementation of the Basic Fractional-Order Element

eng Artykuł w języku angielskim DOI: 10.14313/PAR_238/19

Krzysztof Oprzędkiewicz, Maciej Rosół, wyślij Jakub Żegleń-Włodarczyk AGH University of Science and Technology, Faculty of Electrical Engineering Automatics, Computer Science and Biomedical Engineering

Pobierz Artykuł

Abstract

The paper presents the implementation of the basic fractional order element sγ on the STM32 microcontroller platform. The implementation employs the typical CFE and FOBD approximations, the accuracy of approximation as well as duration of calculations are experimentally tested. Microcontroller implementation of fractional order elements is known; however, real-time tests of such implementations have been not presented yet. Results of experiments show that both methods can be implemented at the considered platform. The FOBD approximation is more accurate, but the CFE one is faster. The presented experimental results prove that the STM32F7 family processor could be used to develop the embedded fractional-order control systems for a broad class of linear and nonlinear dynamic systems. This is crucial during the implementation of the fractional-order control in the hard real-time or embedded systems.

Keywords

CFE approximation, FOBD, fractional-order systems, microcontroller, STM32

Implementacja podstawowego elementu ułamkowego na mikrokontrolerze

Streszczenie

W pracy przedstawiono implementację podstawowego układu ułamkowego rzędu sγ na platformie mikrokontrolera STM32. Implementacja wykorzystuje typowe aproksymacje CFE oraz FOBD. Dokładność aproksymacji oraz czas trwania obliczeń testowane są eksperymentalnie. Implementacja układów ułamkowych na mikrokontroler jest znana, jednak ich testy w czasie rzeczywistym nie były jak dotąd omawiane w literaturze. Wyniki wskazują, że obie metody można wdrożyć na rozważanej platformie. Aproksymacja FOBD jest dokładniejsza, z kolei CFE jest szybsza. Przedstawione rezultaty eksperymentów dowodzą, że procesor z rodziny STM32F7 może zostać wykorzystany do opracowania wbudowanych ułamkowych układów sterowania dla szerokiej klasy liniowych i nieliniowych układów dynamicznych. Zaprezentowane wyniki są istotne z punktu widzenia implementacji algorytmów ułamkowych w twardych systemach czasu rzeczywistego lub w systemach wbudowanych.

Słowa kluczowe

aproksymacja CFE, FOBD, mikrokontroler, STM32, układy ułamkowe

Bibliografia

  1. Bauer W., Implementation of non-integer PI lD m controller for the ATmega328P Microcontroller. [In:] 21st International Conference On Methods and Models in Automation and Robotics, 118−121, DOI: 10.1109/MMAR.2016.7575118.
  2. Bauer W., Implementation of the fractional order systems in the embedded systems. PhD dissertation prepared under supervision W. Mitkowski at AGH University, 2020.
  3. Busłowicz M., Kaczorek T., Simple conditions for practical stability of positive fractional discrete-time linear systems, International Journal of Applied Mathematics and Computer Science, Vol. 19, No. 2, 2009, 263−269, DOI: 10.2478/v10006-009-0022-6.
  4. Caponetto R., Dongola G., Fortuna l., Petras I., Fractional Order Systems. Modeling and Control Applications. World Scientific Series on Nonlinear Science, Series A, Vol. 72, World Scientific Publishing, 2010.
  5. Chen Y.Q., Moore K.L., Discretization schemes for fractional order differentiators and integrators, IEEE Transactions on Circuits and Systems - I: Fundamental Theory and Applications, Vol. 49, No. 3, 2002, 363−367, DOI: 10.1109/81.989172.
  6. Das S., Functional fractional calculus for system identification and controls. Springer, Berlin 2008.
  7. He S., Sun K., Mei X., Yan B., Xu S., Numerical analysis of a fractional order chaotic system based on conformable fractional-order derivative. “The European Physical Journal Plus”, 132, 36, 2017, DOI: 10.1140/epjp/i2017-11306-3.
  8. http://people.tuke.sk/igor.podlubny/usu/matlab/petras/dfod1.m.
  9. http://people.tuke.sk/igor.podlubny/usu/matlab/petras/dfod2.m.
  10. Isermann R., Muenchhof M., Identification of Dynamic Systems. An Introduction with Applications. Springer, 2011.
  11. Kaczorek T., Rogowski K., Fractional Linear Systems and Electrical Circuits, Bialystok University of Technology, 2014.
  12. Machado J.T., Kiryakova V., Mainardi F., Recent history of fractional calculus. “Communications in Nonlinear Science and Numerical Simulation”, Vol. 16, No. 3, 2011, 1140−1153, DOI: 10.1016/j.cnsns.2010.05.027.
  13. Oprzedkiewicz K., Memory-Effective Modifications of PSE Approximation. [in:] Ostalczyk P., Sankowski D., Nowakowski J. (eds) Non-Integer Order Calculus and its Applications. RRNR 2017. Lecture Notes in Electrical Engineering, Vol. 496. 2019, Springer, Cham. DOI: 10.1007/978-3-319-78458-8_11.
  14. Oprzędkiewicz K., Non integer order, state space model of heat transfer process using Caputo-Fabrizio operator. Bulletin of the Polish Academy of Sciences. Technical Sciences, Vol. 66, No. 3, 2018, 249−255.
  15. Oprzędkiewicz K., Gawin E., Non integer order, state space model for one dimensional heat transfer process, “Archives of Control Sciences”, Vol. 26, No. 2, 2016, 261−275, DOI: 10.1515/acsc-2016-0015.
  16. Oprzędkiewicz K., Gawin E., Gawin T., Real-time PLC implementations of fractional order operator. Automation 2018: innovations in automation, robotics and measurement techniques, 15−17 March 2018, Warsaw, Poland, eds. Szewczyk R., Zielinski C., Kaliczynska M., Springer International Publishing, cop. 2018. Advances in Intelligent Systems and Computing; ISSN 2194-5357; Vol. 743, 36−51.
  17. Oprzędkiewicz K., Gawin E., Mitkowski W., Modeling heat distribution with the use of a non-integer order, state space model. “International Journal of Applied Mathematics and Computer Science”, Vol. 26, No 47, 2016, 49−756, DOI: 10.1515/amcs-2016-0052.
  18. Oprzędkiewicz K., Mitkowski W., A memory-efficient noninteger-order discrete–time state–space model of a heat transfer process, “International Journal of Applied Mathematics and Computer Science”, Vol. 28, No. 4, 2018, 649−659, DOI: 10.2478/amcs-2018-0050.
  19. Oprzędkiewicz K., Mitkowski W., Gawin E., Parameter identification for non integer order, state space models of heat plant, 21th international conference on Methods and Models in Automation and Robotics: 29 August-01 September 2016, Miedzyzdroje, 184−188, DOI: 10.1109/MMAR.2016.7575130.
  20. Oprzędkiewicz K., Mitkowski W., Gawin E., An accuracy estimation for a non integer order, discrete, state space model of heat transfer process. Automation 2017: innovations in automation, robotics and measurment techniques, 15-17 March, Warsaw, Poland, eds. Szewczyk R., Zielinski C., Kaliczynska M., Springer International Publishing, cop. 2017. Advances in Intelligent Systems and Computing; ISSN 2194-5357; Vol. 550, 86−98.
  21. Oprzędkiewicz K., Mitkowski W., Gawin E., Dziedzic K., The Caputo vs. Caputo-Fabrizio operators in modeling of heat transfer process. Bulletin of the Polish Academy of Sciences. Technical Sciences, Vol. 66, No. 4, 2018, 501−507.
  22. Oprzędkiewicz K., Stanislawski R., Gawin E., Mitkowski W., A new algorithm for a CFE-approximated solution of a discrete-time noninteger-order state equation. “Bulletin of the Polish Academy of Sciences. Technical Sciences”, Vol. 65, No. 4, 2017, 429−437, DOI: 10.1515/bpasts-2017-0048.
  23. Ostalczyk P., Discrete Fractional Calculus. Applications in control and image processing, Series in Computer Vision, vol. 4, World Scientific Publishing 2016, DOI: 10.1142/9833.
  24. Petraš I., Fractional order feedback control of a DC motor, “Journal of Electrical Engineering”, Vol. 60, No. 3, 2009, 117−128.
  25. Petraš I., Grega Š., Dorčak Ľ., Digital Fractional Order Controllers Realized By Pic Microprocessor: Experimental Results, Proc. of the ICCC’2003 conference, May 26−29 2003, High Tatras, Slovak Republic, 873−678.
  26. Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999.
  27. Ramezani A., Safarinejadian B., A Modified Fractional-Order Unscented Kalman Filter for Nonlinear Fractional-Order Systems. “Circuits, Systems and Signal Processing”, Vol. 37, 2018, 3756−3784, DOI: 10.1007/s00034-017-0729-9.
  28. Rhouma A., Hafsi S., A Microcontroller Implementation of Fractional Order Controller, “International Journal of Control Systems and Robotics”, Vol. 2, 2017, 122−127.
  29. Safikhani Mohammadzadeh H., Tabatabaei M., Design of Non-overshooting Fractional-Order PD and PID Controllers for Special Case of Fractional-Order Plants. “Journal of Control, Automation and Electrical Systems”, Vol. 30, 2019, 611−621, DOI: 10.1007/s40313-019-00491-w.
  30. Vinagre B. M., Petraš I., Podlubny I., Chen Y.O., Using Fractional Order Adjustment Rules and Fractional Order Reference Models in Model-Reference Adaptive Control. “Nonlinear Dynamics”, 29, 2002, 269−279, DOI: 10.1023/A:1016504620249.
  31. Yang, N., Liu, C., A novel fractional-order hyperchaotic system stabilization via fractional sliding-mode control. “Nonlinear Dynamics”, 74, 2013, 721−732, DOI: 10.1007/s11071-013-1000-y.