Implementacja cyfrowego Paszportu Szczepień COVID-19 bazującego na Blockchain chroniący prywatność

pol Artykuł w języku polskim DOI: 10.14313/PAR_240/61

wyślij Przemysław Pukocz AGH Akademia Górniczo-Hutnicza, Katedra Automatyki i Robotyki, al. A. Mickiewicza 30, 30-059 Kraków

Pobierz Artykuł

Streszczenie

W pracy omówiono propozycję implementacji cyfrowego Paszportu Szczepień COVID-19, bazującego na Blockchain chroniącym prywatność. Od końca zeszłego roku, po rozpoczęciu szczepień przeciw COVID-19, toczy się intensywna dyskusja nad formą wprowadzenia takiego narzędzia oraz konsekwencjami jego wdrożenia. Ma ona miejsce w wielu krajach europejskich. Jednym z elementów tej dyskusji, były kwestie bezpieczeństwa i anonimowości weryfikowanych danych szczepionych osób w sposób masowy, w różnych obszarach funkcjonowania społeczeństwa. Zagadnienia te próbuje rozwiązać proponowany system cyfrowego Paszportu Szczepień. System ten wykorzystuje dwie główne metody: Blockchain i funkcje skrótu, które pozwalają na zachowanie bezpieczeństwa, prywatności, a zarazem anonimowości. Celem poprawienia intuicyjności oraz prostoty jego funkcjonowania, w procesie weryfikacji Paszportów zaproponowano technologię kodów QR. System został zaimplementowany i przetestowany w środowisku chmury obliczeniowej Amazon AWS. Zaproponowano architekturę referencyjną bazująca na Blockchain dla środowiska AWS, dedykowaną dużym i wymagającym rozwiązaniom aplikacyjnym Paszportu Szczepień. Dodatkowo środowisko chmury oferuje dostęp do wielu narzędzi, które wykorzystano w implementacji systemu, podnoszących w znaczny sposób bezpieczeństwo całego rozwiązania.

Słowa kluczowe

Blockchain, chmura obliczeniowa, COVID-19, e-health, Paszport Szczepień, systemy wspomagania decyzji

Implementation of the Digital COVID-19 Vaccination Passport based on Blockchain Protecting Privacy

Abstract

The paper discusses proposals for implementing the COVID-19 digital Vaccination Passport based on Blockchain that protects privacy. Since the end of the last year, after the commencement of vaccination against COVID-19, there has been an intense discussion on the form of introducing such a tool and the consequences of its implementation. This discussion is taking place in many European countries. One element of this discussion was the safety and anonymity of the massively verified data of persons on vaccinations in various areas of society functioning. These issues are being resolved by the proposed digital Vaccination Passport system. This system uses two major methods: Blockchain and hash functions, which allow you to maintain security, privacy, and anonymity at the same time. To improve the intuitiveness and simplicity of the system operation, the QR code technology was proposed in the passport verification process. The system has been implemented and tested in the Amazon AWS cloud computing environment. A reference architecture based on Blockchain for the AWS environment was proposed, dedicated to large and demanding application solutions. In addition, the cloud environment offers access to many tools that were used in the system’s implementation, significantly increasing the security of the entire solution.

Keywords

Blockchain, cloud computing, COVID-19, decision support systems, e-health, Vaccination Passport

Bibliografia

  1. World Health Organization: Background paper on Covid 19 disease and vaccines: prepared by the Strategic Advisory Group of Experts (SAGE) on immunization working group on COVID-19 vaccines, 22 December 2020, Geneva.
  2. International certificate of vaccination or prophylaxis [www.who.int/ihr/ports_airports/icvp/en/].
  3. World Health Organization: The COVID-19 candidate vaccine landscape. Geneva 2021.
  4. Xu H., Zhang L., Onireti O., Fang Y., Buchanan W.J., Imran M.A., BeepTrace: Blockchain-enabled Privacy-preserving Contact Tracing for COVID-19 Pandemic and Beyond. “IEEE Internet of Things Journal”, 2020, DOI: 10.1109/JIOT.2020.3025953.
  5. Klaine P.V., Zhang L., Zhou B., Sun Y., Xu H., Imran M., Privacy-Preserving Contact Tracing and Public Risk Assessment Using Blockchain for COVID-19 Pandemic. “IEEE Internet of Things Magazine”, Vol. 3, No. 3, 2020, 58–63, DOI: 10.1109/IOTM.0001.2000078.
  6. Lv W., Wu S., Jiang C., Cui Y., Qiu X., Zhang Y., Towards Large-Scale and Privacy-Preserving Contact Tracing in COVID-19 pandemic: A Blockchain Perspective. “IEEE Transactions Network Science and Engineering”, 2020, DOI: 10.1109/TNSE.2020.3030925.
  7. Demir M., Turetken O., Ferworn A., Blockchain-Based Transparent Disaster Relief Delivery Assurance. [In:] 2020 IEEE International Systems Conference (SysCon), 1–8, DOI: 10.1109/SysCon47679.2020.9275915.
  8. Kumar R., Tripathi R., A Secure and Distributed Framework for sharing COVID-19 patient Reports using Consortium Blockchain and IPFS. [In:] 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), 231–236, DOI: 10.1109/PDGC50313.2020.9315755.
  9. Hasavari S., Song Y.T., A Secure and Scalable Data Source for Emergency Medical Care using Blockchain Technology. [In:] 2019 IEEE 17th International Conference on Software Engineering Research, Management and Applications (SERA), 71–75, DOI: 10.1109/SERA.2019.8886792.
  10. Christodoulou K., Christodoulou P., Zinonos Z., Carayannis E.G., Chatzichristofis S.A., Health Information Exchange with Blockchain amid Covid-19-like Pandemics. [In:] 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS), 412–417, DOI: 10.1109/DCOSS49796.2020.00071.
  11. Delaney S., Schmidt D., Chan C., The Logical Architec ture Essential for the Creation of a Comprehensive Patient Healthcare Profile on Blockchain. [In:] 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). 1–7, DOI: 10.1109/WF-IoT48130.2020.9221024.
  12. Geneiatakis D., Soupionis Y., Steri G., Kounelis I., Neisse R., Nai-Fovino I., Blockchain Performance Analysis for Support ing Cross-Border E-Government Services. “IEEE Transactions on Engineering Management”, Vol. 67, No. 4, 2020, 1310–1322, 2020, DOI: 10.1109/TEM.2020.2979325.
  13. Castaldo L., Cinque V., Blockchain-Based Logging for the Cross-Border Exchange of eHealth Data in Europe. [In:] Gelenbe E., Campegiani P., Czachórski T., Katsikas S.K., Komnios I., Romano L., Tzovaras D. (eds.) Security in Computer and Information Sciences. 46–56. Springer Interna tional Publishing, Cham 2018.
  14. Shahriar Rahman M., Al Omar A., Bhuiyan M.Z.A., Basu A., Kiyomoto S., Wang G., Accountable Cross-Border Data Sharing Using Blockchain Under Relaxed Trust Assumption. “IEEE Transactions on Engineering Management”, Vol. 67, No. 4, 2020, 1476–1486, DOI: 10.1109/TEM.2019.2960829.
  15. Patel D., Balakarthikeyan Mistry V., Border Control and Immigration on Blockchain. [In:] Chen S., Wang H., Zhang L.-J. (eds.) Blockchain – ICBC 2018. 166–179. Springer Interna tional Publishing, Cham 2018, DOI: 10.1007/978-3-319-94478-4_12.
  16. Wu H., Cao J., Yang Y., Tung C.L., Jiang S., Tang B., Liu Y., Wang X., Deng Y., Data Management in Supply Chain Using Blockchain: Challenges and a Case Study. [In:] 2019 28th International Conference on Computer Communication and Networks (ICCCN). 1–8, DOI: 10.1109/ICCCN.2019.8846964.
  17. Malik S., Dedeoglu V., Kanhere S.S., Jurdak R., TrustChain: Trust Management in Blockchain and IoT Supported Supply Chains. [In:] IEEE International Conference on Blockchain, 2019, 184–193, DOI: 10.1109/Blockchain.2019.00032.
  18. Febriansyah, Antoni D., Lestari E., The Role of Blockchain Technology in E-Govemment Capability: Literature Review. [In:] Fifth International Conference on Informatics and Com puting, 2020, 1–5, DOI: 10.1109/ICIC50835.2020.9288578.
  19. Kalla A., Hewa T., Mishra R.A., Ylianttila M., Liyanage M., The Role of Blockchain to Fight Against COVID-19. “IEEE Engineering Management Review”, Vol. 48, No. 3, 2020, 85–96, DOI: 10.1109/EMR.2020.3014052.
  20. Gunter T.D., Terry N.P., The emergence of national electronic health record architectures in the United States and Australia: models, costs, and questions. “Journal of Medical Internet Research”, Vol. 7, 2005, DOI: 10.2196/jmir.7.1.e3.
  21. Bartlett J., Chile’s ‘immunity passport’ will allow recovered coronavirus patients to break free from lockdown, get back to work, [www.washingtonpost.com/world/the_americas/chile-coronavirus-immunity-passport-antibody-testing-card/2020/04/20/8daef326-826d-11ea-81a3-9 690c9881111_story.html].
  22. Phelan A., COVID-19 immunity passports and vaccination certificates: scientific, equitable, and legal challenges. “The Lancet”, Vol. 395, No. 10237, 2020, 1595–1598, DOI: 10.1016/S0140-6736(20)31034-5.
  23. Deka S.K., Goswami S., Anand A., A Blockchain Based Technique for Storing Vaccination Records. [In:] 2020 IEEE Bombay Section Signature Conference, 135–139, DOI: 10.1109/IBSSC51096.2020.9332171.
  24. Hasan H.R., Salah K., Jayaraman R., Arshad J., Yaqoob I., Omar M., Ellahham S., Blockchain-Based Solution for COVID-19 Digital Medical Passports and Immunity Certificates. “IEEE Access”, Vol. 8, 2020, 222093–222108, DOI: 10.1109/ACCESS.2020.3043.
  25. Eisenstadt M., Ramachandran M., Chowdhury N., Third A., Domingue J.: COVID-19 Antibody Test/Vaccination Certification: There’s an App for That, “IEEE Open Journal of Engineering in Medicine and Biology”, Vol. 1, 2020, 148–155, DOI: 10.1109/OJEMB.2020.2999214.
  26. Chaudhari S., Clear M., Tewari H., Framework for a DLT Based COVID-19 Passport. ArXiv Prepr. ArXiv200801120, 2020.
  27. Hernández-Ramos J.L., Karopoulos G., Geneiatakis D., Martin T., Kambourakis G., Fovino I.N., Sharing pandemic vaccination certificates through blockchain: Case study and performance evaluation, 2021.
  28. Hayes B., Cloud computing, “Communications of the ACM”, Vol. 51, No. 7, 2008, 9–11, DOI: 10.1145/1364782.1364786.
  29. Compaq Computer Corporation: Internet Solutions Division Strategy for Cloud Computing. CST presentation, 1996.
  30. Sehgal N.K., Bhatt P.C.P., Cloud Computing: Concepts and Practices. Springer International Publishing, 2018.
  31. Okediran O.O., Sijuade A.A., Wahab W.B., Oladimeji A.I., A Framework for a Cloud-Based Electronic Health Records System for Developing Countries. [In:] International Conference on Electrical, Communication, and Computer Engineering, 2020, 1–5, DOI: 10.1109/ICECCE49384.2020.9179276.
  32. Maganti P.K., Chouragade P.M., Secure Health Record Sharing for Mobile Healthcare in Privacy Preserving Cloud Environment. [In:] IEEE International Conference on Electrical, Computer and Communication Technologies, 2019, 1–4, DOI: 10.1109/ICECCT.2019.8869390.
  33. Varghese B., Buyya R., Next generation cloud computing: New trends and research directions, “Future Generation Computer Systems”, Vol. 79, 2018, 849–861, DOI: 10.1016/j.future.2017.09.020.
  34. State of the Cloud Report 2021 from Flexera. Flexera, Itasca, Illinois, United States (2021).