Trajectory Planning for Mobile Manipulators with Control Constraints

eng Artykuł w języku angielskim DOI: 10.14313/PAR_248/21

wyślij Grzegorz Pająk , Iwona Pająk University of Zielona Góra, Institute of Mechanical Engineering

Pobierz Artykuł

Abstract

This paper presents the method of trajectory planning for mobile manipulators considering limitations resulting from capabilities of robotic system actuators. The fulfillment of control constraints is achieved by introducing virtual control scaling of the robot trajectory in the limited periods of time. Such an approach allows researchers to obtain the trajectories fulfilling control constraints without significantly increasing the time of task execution. The proposed method generates sub-optimal trajectories maximizing the manipulability measure of the robot arm, preserves mechanical and collision avoidance limitations and can be used in real-time trajectory planning. The effectiveness of the presented solution is confirmed by computer simulations involving a mobile manipulator with parameters corresponding to KUKA youBot.

Keywords

control constraints, mobile robot, obstacle avoidance system, state constraints, trajectory planning

Planowanie trajektorii dla manipulatorów mobilnych z ograniczeniami na sterowania

Streszczenie

W pracy przedstawiono metodę planowania trajektorii dla manipulatorów mobilnych uwzględniającą ograniczenia wynikające z możliwości układów napędowych robota. Spełnienie ograniczeń na sterowana zostało osiągnięte poprzez wprowadzenie wirtualnego sterowania skalującego trajektorię robota w ograniczonych przedziałach czasu. Takie podejście pozwoliło na uzyskanie trajektorii spełniających ograniczenia na sterowania bez znaczącego wydłużenia czasu realizacji zadania. Zaproponowana metoda generuje sub-optymalne trajektorie maksymalizując miarę manipulowalności ramienia robota, zachowuje ograniczenia mechaniczne oraz warunki unikania kolizji i może być zastosowana do planowania trajektorii w czasie rzeczywistym. Skuteczność zaproponowanego rozwiązania została potwierdzona symulacjami komputerowymi wykonanymi z użyciem mobilnego manipulatora o parametrach odpowiadających robotowi KUKA youBot.

Słowa kluczowe

ograniczenia na sterowanie, ograniczenia zmiennych stanu, planowanie trajektorii ruchu, robot mobilny, unikanie kolizji

Bibliografia

  1. Akli I., Trajectory planning for mobile manipulators including manipulability percentage index. „International Journal of Intelligent Robotics and Applications”, Vol. 5, 2021, 543–557, DOI: 10.1007/s41315-021-00190-3.
  2. Berger M., Tagliasacchi A., Seversky L.M., Alliez P., Guennebaud G., Levine J.A., Sharf A., Silva C.T. A survey of surface reconstruction from point clouds. „Computer Graphics Forum”, Vol. 36, 2017, 301–329, Wiley Online Library.
  3. Campion G., Bastin G., d’Andrea Novel B., Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. „IEEE Transactions on Robotics and Automation”, Vol. 12, No.  1, 1996, 47–62, DOI: 10.1109/70.481750.
  4. Fareh R., Saad M.R., Saad M., Brahmi A., Bettayeb M., Trajectory tracking and stability analysis for mobile manipulators based on decentralized control. „Robotica”, Vol. 37, No. 10, 2019, 1732–1749, DOI: 10.1017/S0263574719000225.
  5. Galicki M., The selected methods of manipulators’ optimal trajectory planning. WNT Publisher 2000 (in Polish).
  6. Galicki M., Task space control of mobile manipulators. „Robotica”, Vol. 29, No. 2, 2011, 221–232, DOI: 10.1017/S026357471000007X.
  7. Gálvez A., Iglesias A., Particle swarm optimization for non-uniform rational B-spline surface reconstruction from clouds of 3D data points. „Information Sciences”, Vol. 192, 2012, 174–192, DOI: 10.1016/j.ins.2010.11.007.
  8. Huang Q., Tanie K., Sugano S., Coordinated motion planning for a mobile manipulator considering stability and manipulation. „International Journal of Robotics Research”, Vol. 19, No. 8, 2000, 732–742, DOI: 10.1177/02783640022067139.
  9. Jaklic A., Leonardis A., Solina F., Segmentation and recovery of superquadrics, Vol. 20, 2013, Springer Science & Business Media, DOI: 10.1007/978-94-015-9456-1.
  10. Keller P., Kreylos O., Cowgill E.S., Kellogg L.H., Hering-Bertram M., Construction of Implicit Surfaces from Point Clouds Using a Feature-based Approach. „Scientific Visualization: Interactions, Features, Metaphors”, Vol. 2, 2011, 129–143, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, DOI: 10.4230/DFU.Vol2.SciViz.2011.129.
  11. Khansari-Zadeh S.M., Billard A., A dynamical system approach to realtime obstacle avoidance. „Autonomous Robots”, Vol. 32, No. 4, 2012, 433–454, DOI: 10.1007/s10514-012-9287-y.
  12. Leeper A., Chan S., Salisbury K., Point clouds can be represented as implicit surfaces for constraintbased haptic rendering. [In:] 2012 IEEE International Conference on Robotics and Automation, 5000–5005, DOI: 10.1109/ICRA.2012.6225278.
  13. Li Q., Mu Y., You Y., Zhang Z., Feng C., A Hierarchical Motion Planning for Mobile Manipulator, „IEEJ Transactions on Electrical and Electronic Engineering”, Vol. 15, No. 9, 2020, 1390–1399, DOI: 10.1002/tee.23206.
  14. Mazur A., Płaskonka J., The Serret–Frenet parametrization in a control of a mobile manipulator of (nh, h) type. „IFAC Proceedings Volumes”, Vol. 45, No. 22, 2012, 405–410, DOI: 10.3182/20120905-3-HR-2030.00069.
  15. Pająk G., Trajectory planning for mobile manipulators subject to control constraints. [In:] 11th RoMoCo ’17, 117–122, DOI: 10.1109/RoMoCo.2017.8003901.
  16. Pająk G., Pająk I., Planning of a point to point collision-free trajectory for mobile manipulators. [In:] 10th RoMoCo ’15, 142–147, DOI: 10.1109/RoMoCo.2015.7219726.
  17. Pająk G., Pająk I., Point-to-point collision-free trajectory planning for mobile manipulators. „Journal of Intelligent and Robotic Systems”, 2016, DOI: 10.1007/s10846-016-0390-8.
  18. Prasad A., Sharma B., Vanualailai J., Kumar S., Motion control of an articulated mobile manipulator in 3D using the Lyapunov-based control scheme. „International Journal of Control”, Vol. 95, No. 9, 2022, 2581–2595, DOI: 10.1080/00207179.2021.1919927.
  19. Sandakalum T., Ang M.H. Jr., Motion Planning for Mobile Manipulators – A Systematic Review. „Machines”, Vol. 10, No. 2, 2022, DOI: 10.3390/machines10020097.
  20. Singh S.K., Leu M.C., Manipulator motion planning in the presence of obstacles and dynamic constraints. „International Journal of Robotics Research”, Vol. 10, No. 2, 1991, 171–187, DOI: 10.1177/027836499101000208.
  21. Tan J., Xi N., Wang Y., Integrated task planning and control for mobile manipulators. „International Journal of Robotics Research”, Vol. 22, No. 5, 2003, 337–354, DOI: 10.1177/0278364903022005004.
  22. Yoshikawa T., Manipulability of robotic mechanisms. „International Journal of Robotics Research”, Vol. 4, No. 2, 1985, 3–9, DOI: 10.1177/027836498500400201.
  23. Zhou S., Pradeep Y.C., Zhu M., Amezquita-Semprun K., Chen P., Motion control of a nonholonomic mobile manipulator in task space. „Asian Journal of Control”, Vol. 20, No. 5, 2018, 1745–1754, DOI: 10.1002/asjc.1694.