The Impact of Optical Fiber Type on the Temperature Measurements in Distributed Optical Fiber Sensor Systems

eng Artykuł w języku angielskim DOI: 10.14313/PAR_249/27

Mateusz Łakomski *, Mateusz Plona *, Bartłomiej Guzowski *, wyślij Iyad S.M. Shatarah ** * Department of Semiconductor and Optoelectronic Devices, Lodz University of Technology, Politechniki Ave. 10, 93-590 Lodz, Poland ** Institute of Electronics, Lodz University of Technology, Politechniki Ave. 10, 93-590 Lodz, Poland

Pobierz Artykuł

Abstract

This paper presents the capabilities of using distributed optical fiber sensors to obtain the temperature profile of an optical path made of silica telecom optical fiber. The impact of the optical fiber type on the temperature measurements is also observed. Two types of optical fibers are tested: standard G.652.D and low-loss G.654.C. DOFS systems for temperature measurements are based on the phenomenon of Raman or Brillouin backscattering. In case of Brillouin-based systems, the spectral properties depend on the type of optical fiber and its parameters. The Brillouin frequency shift depends on the temperature around the fiber, as well as the strain applied to the optical fiber. The presented results show that temperature coefficient can also vary depending on the optical fiber type. For the standard G.652.D optical fiber, the temperature coefficient equals 1.12 MHz/°C and 1.14 MHz/°C depending on the tracked peaks, while for the low-loss G.654.C fiber it equal 1.4 MHz/°C.

Keywords

Brillouin scattering, DOFS, optical fiber, OTDR

Wpływ typu światłowodu na pomiar temperatury w systemach rozłożonych czujników światłowodowych

Streszczenie

W artykule przedstawiono możliwości wykorzystania rozłożonych czujników światłowodowych do uzyskania rozkładu temperatury wzdłuż toru optycznego wykonanego z telekomunikacyjnego włókna światłowodowego. Obserwowany jest również wpływ rodzaju włókna światłowodowego na pomiary temperatury. Przetestowano dwa rodzaje włókien światłowodowych: standardowe G.652.D oraz o niskiej stratności G.654.C. Systemy DOFS do pomiarów temperatury wykorzystują zjawisko wstecznych rozpraszania Ramana lub Brillouina. W przypadku systemów bazujących na zjawisku Brillouina, właściwości spektralne zależą od rodzaju włókna optycznego oraz jego parametrów. Przesunięcie częstotliwości Brillouina zależy od temperatury wokół włókna oraz nałożonego na włókno naprężenia. Przedstawione wyniki pokazują, że współczynnik temperaturowy może również różnić się w zależności od rodzaju włókna optycznego. Dla standardowego włókna światłowodowego G.652.D, współczynnik temperaturowy wynosi 1,12 MHz/°C lub 1,14 MHz/°C w zależności od śledzonych szczytów, podczas gdy dla włókna o niskiej stratności G.654.C wynosi 1,4 MHz/°C.

Słowa kluczowe

DOFS, OTDR, rozpraszanie Brillouina, światłowód

Bibliografia

  1. Pendão C., Silva I., Optical Fiber Sensors and Sensing Networks: Overview of the Main Principles and Applications, “Sensors”, Vol. 22, No. 19, 2022, 7554, DOI: 10.3390/s22197554.
  2. Hartog A. H., An Introduction to Distributed Optical Fibre Sensors, “CRC Press”, 1st edition, 2007. DOI: 10.1201/9781315119014.
  3. Palmieri L., Schenato L., Distributed Optical Fiber Sensing Based on Rayleigh Scattering, “The Open Optics Journal”, Vol. 7, 2013, 104–127, DOI: 10.2174/1874328501307010104.
  4. Yilmaz G., Karlik S.E., A distributed optical fiber sensor for temperature detection in power cables, “Sensors and Actuators A” Physical”, Vol. 125, No. 2, 2006, 148–155, DOI: 10.1016/j.sna.2005.06.024.
  5. Seitz W.R., Chemical Sensors Based on Fiber Optics, “Analytical Chemistry”, Vol. 56, No. 1, 1984, 16A–34A, DOI: 10.1021/ac00265a711.
  6. Guzowski B., Łakomski M., Temperature sensor based on periodically tapered optical fibers, “Sensors”, Vol. 21, No. 24, 2021, 8358, DOI: 10.3390/s21248358.
  7. Gu H., Dong H., Zhang H., He J., Pan H., Effects of Polymer Coatings on Temperature Sensitivity of Brillouin Frequency Shift Within Double-Coated Fibers, “IEEE Sensors Journal” Vol. 13, No. 2, 2013, 864–869, DOI: 10.1109/JSEN.2012.2230438.
  8. Juan H.D.J., Humbert G., Dong H., Zhang G., Hao J., Sun Q., Review of Specialty Fiber Based Brillouin Optical Time Domain Analysis Technology, “Photonics”, Vol. 8 No. 10, 2021, 421, DOI: 10.3390/photonics8100421
  9. Torre U., Conveyor fire detection & condition monitoring using fibre optic distributed temperature sensing (DTS) “Advanced Photonics Australia”, 2017, available at: https://apapl.com.au/wpcontent/uploads/2022/10/Conveyor-Fire-Detection-and-Condition-Monitoring-using-DTS-Paper.pdf
  10. Thomas P.J., Hellevang J.O., A fully distributed fibre optic sensor for relative humidity measurements, “Sensors and Actuators B: Chemical”, Vol. 247, 2017, 284–289, DOI:10.1016/j.snb.2017.02.027.
  11. Rogers A.J., Shatalin S.V., Kanellopoulos S.E., Distributed measurement of fluid pressure via optical-fibre backscatter polarimetry, “ Proc. SPIE 5855, 17th International Conference on Optical Fibre Sensors”, Vol. 5855, 2005, 230–233, DOI: 10.1117/12.623804.
  12. Ross J.N., Measurement of magnetic field by polarisation optical time-domain reflectometry, “Electronics Letters”, Vol. 17, No. 17, 1981, 596–597, DOI: 10.1049/el:19810419.
  13. Cordero S.R., Ruiz D., Huang W., Cohen L.G., Lieberman R.A., Intrinsic chemical sensor fibers for extended-length chlorine detection, “Proc. SPIE 5589, Fiber Optic Sensor Technology and Applications III”, 2004, DOI: 10.1117/12.605489.
  14. Shimizu K., Horiguchi T., Koyamada Y., Measurement of distributed strain and temperature in a branched optical fiber network by use of Brillouin optical time-domain reflectometry, “Optics Letters”, Vol. 20, No. 5, 1995, 507–509, DOI: 10.1364/OL.20.000507.
  15. Suárez F., Dozier J., Selker J., Hausner M.B., Tyler S.W., Heat Transfer in the Environment: Development and Use of Fiber-Optic Distributed Temperature Sensing, “Developments in Heat Transfer”, InTech, 2011, DOI: 10.5772/19474.
  16. Sienko R., Zych M., Bednarski Ł., Howiacki T., Strain and crack analysis within concrete members using distributed fibre optic sensors, “Structural Health Monitoring”, Vol. 18, No. 5–6, 1510–1526, DOI: 10.1177/1475921718804466.
  17. Selker J.S., Thévenaz L., Huwald H., Mallet A., Luxemburg W., van de Giesen N., StejskalM., Zeman J., Westhoff M., Parlange M.B., Distributed fiber‐optic temperature sensing for hydrologic systems, “Water Resources Research”, Vol. 42, No. 12, W12202, 2006, DOI: 10.1029/2006WR005326.
  18. Ukil A., Braendle H., Krippner P., Distributed temperature sensing: Review of technology and applications, “IEEE Sensors Journal”, Vol. 12, No. 5, 2011, 885–892, DOI: 10.1109/JSEN.2011.2162060.
  19. Farahani M.A., Gogolla T., Spontaneous Raman Scattering in Optical Fibers with Modulated Probe Light for Distributed Temperature Raman Remote Sensing, “Journal of Lightwave Technology”, Vol. 17, No. 8, 1999, 1379–1391, DOI: 10.1109/50.779159.
  20. Yeniay A., Delavaux J.M., Toulouse J., Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers, “Journal Of Lightwave Technology”, Vol. 20, No. 8, 1425, 2002, DOI: 10.1109/JLT.2002.800291.
  21. Ly J., et al., Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression, “PHOTONIC SENSORS”, Vol. 8, No. 2, 103–113, 2018, DOI: 10.1007/s13320-017-0474-5.
  22. Lu P., Lalam N., Badar M., Chorpening B.T., Buric M.P., Ohodnicki P.R., Distributed optical fiber sensing: Review and perspective, “Applied Physics Reviews”, Vol. 6, No. 4, 2019, 041302, DOI: 10.1063/1.5113955.
  23. Ippen E., Stolen R., Stimulated Brillouin scattering in optical fibers, “Appl. Phys. Lett.” Vol. 21, 1972, 539–541, DOI: 10.1063/1.1654249.
  24. Lakomski M., Tosik G., Brillouin backscattering analysis in recent generation of telecom optical fibers, “Optica Applicata”, Vol. 52, No. 3, 2022, 405–416, DOI: 10.37190/oa220307.
  25. Horiguchi T., Shimizu K., Kurashima T., Tateda M., Koy amada Y., Development of a distributed sensing technique using Brillouin scattering, “Journal of Lightwave Technology”, Vol. 13, No. 7, 1995, 1296-1302, DOI: 10.1109/50.400684.
  26. Ismail A., Qurratu Aini binti Siat @ Sirat, Azman bin Kassim, Hisham bin Mohamad, Strain and temperature calibration of Brillouin Optical Time Domain Analysis (BOTDA) sensing system, “IOP Conference IOP Conference Series: Materials Science and Engineering”, Vol. 527, 2019, 012028, DOI: 10.1088/1757-899X/527/1/012028.
  27. OZOptics BOTDR DSTS module datasheet. Available at: https://www.ozoptics.com/ALLNEW_PDF/DTS0138.pdf.
  28. EXFO MaxTester730B OTDR reflectometer datasheet. Available at: https://www.exfo.com/umbraco/surface/file/download/? ni=11066&cn=en-US&pi=5644.
  29. Zou W., He Z., Hotate K., Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber, “Optics Express”, Vol. 17, 2009, 1248–1255, DOI: 10.1364/OE.17.001248