Evaluation of Optical Fiber Macrobendings in Temperature Sensor Dedicated for Power Transformer Monitoring

eng Article in English DOI: 10.14313/PAR_250/39

Bartłomiej Guzowski *, Mateusz Łakomski *, send Iyad S.M. Shatarah ** * Department of Semiconductor and Optoelectronic Devices, Lodz University of Technology, Politechniki Ave. 10, 93-590 Lodz, Poland ** Institute of Electronics, Lodz University of Technology, Politechniki Ave. 10, 93-590 Lodz, Poland

Download Article

Abstract

Optical fiber sensing techniques are recognized as very promising in diagnostic and condition monitoring of power transformers. According to the IEC standard 60076-2, the winding hot-spot temperature can be designated with the optical fiber sensor. In this paper, the investigation of the influence of macrobending of the optical fiber temperature sensor on the sensing performance is presented. The obtained results prove that the optical fiber sensor wrapped six times around the 14 mm cylinder still provides temperature sensing abilities.

Keywords

GaAs sensor, monitoring, optical fiber, power transformer, temperature

Ocena wprowadzanych makrozgięć na światłowodzie na działanie czujnika temperatury dedykowanego do monitorowania transformatorów

Streszczenie

Sensory światłowodowe doskonale sprawdzają się w diagnostyce i monitorowaniu stanu transformatorów. Norma IEC 60076-2:2011 wskazuje na możliwość użycia czujników światłowodowych do pomiaru temperatury uzwojenia transformatora. W niniejszym artykule badany jest wpływ makrozgięć na działanie światłowodowego czujnika temperatury. Uzyskane dane potwierdzają, że czujnik nadal działa prawidłowo, pomimo wprowadzonego makrozgięcia w postaci sześciokrotnego zawinięcia światłowodu wokół cylindra o średnicy 14 mm.

Słowa kluczowe

monitorowanie, sensor GaAs, światłowód, temperatura, transformator

Bibliography

  1. Samimi M.H., Ilkhechi H.D., Survey of different sensors employed for the power transformer monitoring, “IET Science, Measurement & Technology”, Vol. 14, No. 1, 2019, 1–8, DOI: 10.1049/iet-smt.2019.0103.
  2. Fofana I., Hadjadj Y., Electrical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers, “Energies”, Vol. 9, No. 9, 2016, 679, DOI: 10.3390/en9090679.
  3. N’cho J.S., Fofana I., Hadjadj Y., Beroual A., Review of physicochemical-based diagnostic techniques for assessing insulation condition in aged transformers, “Energies”, Vol. 9, No. 5, 2016, 367, DOI: 10.3390/en9050367.
  4. Theodosoglou I., Chatziathanasiou V., Papagiannakis A., Wiecek B., De Mey G., Electrothermal analysis and temperature fluctuations’ prediction of overhead power lines, “International Journal of Electrical Power & Energy Systems”, Vol. 87, 2017, 198–210, DOI: 10.1016/j.ijepes.2016.07.002.
  5. Razzaq A., Zainuddin H., Hanaffi F., Chyad R.M., Transformer oil diagnostic by using an optical fibre system: a review, “IET Science, Measurement & Technology”, Vol.13 No. 5, 2019, 615–621, DOI: 10.1049/iet-smt.2018.5076.
  6. Islam M.M., Lee G., Hettiwatte S.N., A review of condition monitoring techniques and diagnostic tests for lifetime estimation of power transformers, “Electrical Engineering”, Vol. 100, No. 2, 2018, 581–605, DOI: 10.1007/s00202-017-0532-4.
  7. Kulik A., Aspekty zastosowania światłowodowego pomiaru temperatury punktów gorących w wysokonapięciowych uzwojeniach transformatorów dużych mocy, „Przegląd Elektrotechniczny”, Vol. 93, No. 11, 2017, 41–46, DOI: 10.15199/48.2017.11.08.
  8. Guerrero J.M., Castilla A.E., Fernández J.A.S., Platero C.A., Transformer Oil Diagnosis Based on a Capacitive Sensor Frequency Response Analysis, “IEEE Access”, Vol. 9, 2021, 7576–7585, DOI: 10.1109/ACCESS.2021.3049192.
  9. Gao M., Zhang Q., Ding Y., Wang T., Ni H., Yuan W., Investigation on bubbling phenomenon in oil-paper insulation, “IEEE Transactions on Dielectrics and Electrical Insulation”, Vol. 24, No. 4, 2017, 2362–2370, DOI: 10.1109/TDEI.2017.006471
  10. Han Y., Song Y.H., Condition monitoring techniques for electrical equipment-a literature survey, “IEEE Transactions on Power Delivery”, Vol. 18, No. 1, 2003, 4–13, DOI: 10.1109/TPWRD.2002.801425
  11. Zukowski P., Rogalski P., Kołtunowicz T.N., Kierczynski K., Zenker M., Pogrebnjak A.D., Kucera M., DC and AC Tests of Moisture Electrical Pressboard Impregnated with Mineral Oil or Synthetic Ester—Determination of Water Status in Power Transformer Insulation, “Energies”, Vol. 15, No. 8, 2022, 2859, DOI: 10.3390/en15082859
  12. N’cho J.S., Fofana I., Review of Fiber Optic Diagnostic Techniques for Power Transformers, “Energies”, Vol. 13, No, 7, 2020, 1789, DOI: 10.3390/en13071789.
  13. Lakomski M., Guzowski B., Wozniak A., Fabrication of ultra-long tapered optical fibers, “Microelectronic Engineering”, Vol. 221, 2020, 111193, DOI:10.1016/j.mee.2019.111193.
  14. Guzowski B., Lakomski M., Temperature Sensor Based on Periodically Tapered Optical Fibers, “Sensors”, Vol. 21, 2021, 8358, DOI: 10.3390/s21248358.
  15. Meitei S.N., Borah K., Chatterjee S., Review on monitoring of transformer insulation oil using optical fiber sensors, “Results in Optics”, Vol. 10, 2023, 100361, DOI: 10.1016/j.rio.2023.100361.
  16. Monteiro C.S., et al., Optical Fiber Sensors for Structural Monitoring in Power Transformers, “Sensors”, Vol. 21, No. 18, 2021, 6127, DOI: 10.3390/s21186127.
  17. Zubiate P., et al., Fabrication of Optical Fiber Sensors for Measuring Ageing Transformer Oil in Wavelength, “IEEE Sensors Journal”, Vol. 16. No. 12, 2016, 4798-4802, DOI: 10.1109/JSEN.2016.2549562.
  18. Ma G., et al., Optical sensors for power transformer monitoring: A review, “High Voltage”, Vol. 6, 2021, 367-386, DOI: 10.1049/hve2.12021.
  19. International Standard IEC 60076-2:2011, “Power transformers – Part 2: Temperature rise for liquid-immersed transformers”, 2011.
  20. Brozel M.R., Stillman G.E., Properties of Gallium Arsenide, “Institution of Electrical Engineers”, 3rd Ed., London, 1996, DOI: 10.1002/(SICI)1521-4079(199902)34:2<166::AIDCRAT166>3.0.CO;2-Q.