Comparative analysis of exoskeletal actuators

eng Artykuł w języku angielskim DOI:

wyślij Grzegorz Redlarski , Krzysztof Blecharz , Mariusz Dąbkowski , Aleksander Pałkowski , Piotr Mateusz Tojza Faculty of Electrical and Control Engineering, Gdansk University of Technology

Pobierz Artykuł

Abstract

Since the beginning of the development of exoskeletons in the early 1960s there was a constant need for improving their actuators technology. Requirements for high power and torque for the lower body and very high precision for the hand motion, while maintaining the flexibility of biological muscles, are still not fully satisfied. The problem lies not just in the lack of appropriate actuator technology, but also in the inability to meet their energy needs. This paper contributes to this problem, first by describing the most commonly used technologies and then by presenting simulation results for lower limb exoskeleton motion. In addition the energy requirements of the modeled devices and their control possibilities along with their usage in various parts of the exoskeleton construction are analyzed.

Keywords

actuator, artificial muscle, energy source, exoskeleton, modeling

Analiza porównawcza urządzeń wykonawczych w egzoszkieletach

Streszczenie

Od czasu rozpoczęcia prac badawczych nad egzoszkieletami na początku lat 60. ubiegłego wieku, istniała ciągła potrzeba udoskonalania technologii związanej z urządzeniami wykonawczymi egzoszkieletów. Wymóg spełnienia zapotrzebowania na dużą mocą i moment dla kończyn dolnych oraz wysokiej precyzji dla ruchów rąk, przy jednoczesnym zachowaniu giętkości mięśni biologicznych, nie został dotychczas zachowany. Problemem nie jest tylko brak odpowiednich technologii, ale również niemożność spełnienia zapotrzebowania energetycznego. W artykule nawiązano do tego zagadnienia, opisując najczęściej stosowane technologie, a następnie przedstawiając wyniki symulacji dla ruchu egzoszkieletu kończyny dolnej. Dodatkowo przeanalizowano wymogi energetyczne modelowanego układu, możliwości sterowania, jak również możliwe zastosowanie dla różnych części egzoszkieletu.

Słowa kluczowe

egzoszkielet, modelowanie, sztuczne mięśnie, urządzenia wykonawcze, źródło energii

Bibliografia

  1. Pons J.L., Wearable Robots: Biomechatronic Exoskeletons, John Wiley & Sons, 2008.
  2. Pons J.L., Rehabilitation Exoskeletal Robotics, “IEEE Engineering in Medicine and Biology Magazine”, vol. 29, no. 3, 2010, 57-63.
  3. Casolo F., Cinquemani S., Cocetta M., On Active Lower Limb Exoskeletons Actuators, Proceeding of the 5th International Symposium on Mechatronics and its Applications, 2008, 1-6.
  4. Rosen J., Brand M., Fuchs M.B., Arcan M, A Myosignal-based Powered Exoskeleton System, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 31, no. 3, 2001, 210-222.
  5. Schulte R.A., The Characteristics of the McKibben Artificial Muscle, “Application of External Power in Prosthetics and Orthetics”, vol. 874, 1962, 94-115.
  6. Kerrigan D., Riley P., Nieto T.J., Della Croce U., Knee joint torques: A comparison between women and men during barefoot walking, “Arch. Phys. Med. Rehabil.”, vol. 81, 2000, 1162-1165.
  7. Doke J., Donelan J.M., Kuo A.D., Mechanics and energetics of swinging the human leg, “The Journal of Experimental Biology”, vol. 208, 2005, 439-445.
  8. Mochon S., McMahon T.A., Ballistic walking, “Journal of Biomechanics”, vol. 13, 1980, 49-57.
  9. Chou C.-P., Hannaford B., Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles, Proceedings of ICRA, vol. 1, 1994, 281-286.
  10. Tondu B., Lopez P., Modeling and control of Mckibben Artificial Muscle Robot Actuators, “IEEE Control Systems Magazine”, vol. 20, no. 2, 2000, 15-38.
  11. Garrec P., Friconneau J.P., Measson Y., Perrot Y., ABLE, an Innovative Transparent Exoskeleton for the Upper-Limb, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, 1483-1488.
  12. Chen F., Yu Y., Ge Y., Sun J., Deng X., WPAL for Enhancing Human Strength and Endurance during Walking, International Conference on Information Acquisition, 2007, 487-491.
  13. Pratt J.E., Krupp B.T., Morse C.J., Collins S.H., The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance During Walking, IEEE International Conference on Robotics and Automation, vol. 3, 2004, 2430-2435.
  14. Aguirre-Ollinger G., Colgate J.E., Peshkin M.A., Goswami A., Design of an Active 1-DOF Lower-Limb Exoskeleton with Inertia Compensation, “The International Journal of Robotics Research”, vol. 30, no. 4, 2011, 486-49.
  15. Chu A., Kazerooni H., Zoss A., On the Biomimetic Design of the Berkeley Lower Extremity Exoskeleton (BLEEX), Proceedings of the IEEE International Conference on Robotics and Automation, 2005, 4345-4352.
  16. Tsagarakis N., Caldwell D.G., Medrano-Cerda G.A., A 7 DOF pneumatic muscle actuator (pMA) powered exoskeleton, 8th IEEE International Workshop on Robot and Human Interaction, 1999, 327-333.
  17. Reynolds D.B., Repperger D.W., Phillips C.A., Bandry G., Modeling the Dynamic Characteristics of Pneumatic Muscle, “Annals of Biomedical Engineering”, vol. 31, 2003, 310-317.
  18. Caldwell D.G., Medrano-Cerda G.A., Goodwin M., Control of pneumatic muscle actuators, “IEEE Control Systems Magazine”, vol. 2, 1995, 40-48.
  19. Drury B., Control Techniques Drives and Controls Handbook, Institution of Engineering and Technology, 2001.
  20. Safak K.K., Adams G.G., Modeling and simulation of an artificial muscle and its application to biomimetic robot posture control, “Robotics and Autonomous Systems”, vol. 41, no. 4, 2002, 225-243.
  21. Pei Q., Artificial Muscles based on Synthetic Dielectric Elastomers, 31st Annual International Conference of the IEEE EMBS, 2009, 6826-6829.
  22. Medrano-Cerda G.A., Bowler C.J., Caldwell D.G., Adaptive position control of antagonistic pneumatic muscle actuators, IEEE/RSJ International Conference on Intelligent Robots and Systems, 1995, 378-383.
  23. Tojza P.M., Support Systems for Human Limb Movement Controlled by Muscle Contraction, MSc dissertation, 2011.
  24. Leephakpreeda T., Mathematical Modeling of Pneumatic Artificial Muscle Actuation via Hydrogen Driving Metal Hydride-LaNi5, “Journal of Bionic Engineering”, vol. 9, no. 1, 2012, 110-118.