Determination of Transmittance of IR Windows made of CaF2 within Operational Temperatures of Electric Devices

eng Artykuł w języku angielskim DOI: 10.14313/PAR_242/25

wyślij Krzysztof Dziarski *, Arkadiusz Hulewicz ** * Poznań University of Technology, Institute of Electric Power Engineering ** Poznań University of Technology, Institute of Electrical Engineering and Industry Electronics

Pobierz Artykuł

Abstract

The article presents summaries of works which have resulted in the presentation of a formula making it possible to determine an approximate transmittance of an IR window used in thermographic measurements of electric device temperatures. The equation was formulated after analysing components of the IR radiation reaching the camera lens in case when an IR window was not used and when an IR window was used. Conditions prevailing in course of the thermographic temperature measurement of electric devices contained in the switchgear were recreated in the performance of the works. The measurement system which was used in the experiment has been presented. Components of the IR radiation reaching the camera lens in case when the IR window was used and when the IR window was not used have been discussed. The obtained transmittance results of windows VPFR-75 FRK100-CL have been compared against data from literary sources.

Keywords

electric devices, metrology, thermography

Wyznaczanie transmitancji okien transmisyjnych wykonanych z CaF2 w zakresie temperatury pracy aparatów elektrycznych

Streszczenie

W artykule przedstawiono streszczenie prac, w wyniku których uzyskano wzór umożliwiający wyznaczenie przybliżonej transmitancji okna transmisyjnego wykorzystywanego w termograficznych pomiarach temperatur urządzeń elektrycznych. Równanie zostało sformułowane po przeanalizowaniu składowych promieniowania podczerwonego docierającego do obiektywu kamery w przypadku, gdy nie zastosowano okna transmisyjnego oraz w przypadku, gdy zastosowano okno transmisyjne. W trakcie wykonywania prac odtworzono warunki panujące podczas termograficznego pomiaru temperatury urządzeń elektrycznych znajdujących się w rozdzielnicy. Przedstawiono system pomiarowy zastosowany w eksperymencie. Omówiono składowe promieniowania podczerwonego docierającego do obiektywu kamery w przypadku, gdy okno transmisyjne było używane oraz w przypadku , gdy okno transmisyjne nie zostało zastosowane. Uzyskane wyniki transmitancji okien VPFR-75 FRK100-CL porównano z danymi pochodzącymi z literatury.

Słowa kluczowe

metrologia, termografia, urządzenia elektryczne

Bibliografia

  1. Kuwałek P., Estimation of Parameters Associated with Individual Sources of Voltage Fluctuations, “IEEE Transactions On Power Delivery”, Vol. 36, No. 1, 2021, 351–361, DOI: 10.1109/TPWRD.2020.2976707.
  2. Tian W., Leit C., Jia R., Winter R.M., Probability Based Circuit Breaker Modeling and Risk Evaluation on Potential Power, IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), 2017, DOI: 10.1109/CYBER.2017.8446423.
  3. Książkiewicz A., Dombek G., Nowak K., Change in Electric Contact Resistance of Low-Voltage Relays Affected by Fault Current. “Materials”, Vol. 12, No. 13, 2019, 2166-1–2166-11, DOI: 10.3390/ma12132166.
  4. Fangrat J., Kaczorek-Chrobak K., Papis B.K., Fire Behavior of Electrical Installations in Buildings. “Energies”, Vol. 13, No. 23, 2020, DOI: 10.3390/en13236433.
  5. Balabozov I., Experimental Research with Microcontroller System for Defining of Joule Integral of Fuse, 10th Electrical Engineering Faculty Conference (BulEF), 2018, DOI: 10.1109/BULEF.2018.8646930.
  6. Wesołowski M., Chmielak W., A new sensor system for measuring environmental parameters of switchgear, Progress in Applied Electrical Engineering (PAEE), 2017, DOI: 10.1109/PAEE.2017.8009024.
  7. Zaccara Z., Edelman J.B., Cardone G., A general procedure for infrared thermography heat transfer measurements in hypersonic wind tunnels, “International Journal of Heat and Mass Transfer”, 2020, DOI: 10.1016/j.ijheatmasstransfer.2020.120419.
  8. Altenburg J.S., Straße A., Gumenyuk A., Meierhofer C., In-situ monitoring of a laser metal deposition (LMD) process: Comparison of MWIR, SWIR and high-speed NIR thermography. “Quantitative InfraRed Thermography Journal”, 2020, DOI: 10.1080/17686733.2020.1829889.
  9. Yoon S.T., Park J.C., An experimental study on the evaluation of temperature uniformity on the surface of a blackbody using infrared cameras. “Quantitative InfraRed Thermography Journal”, 2021, DOI: 10.1080/17686733.2021.1877918.
  10. Schuss C., Remes K., Leppänen K., Saarela J., Fabritius T., Eichberger B., Rahkonen T., Detecting Defects in Photovoltaic Cells and Panels with the Help of Time-Resolved Thermography under Outdoor Environmental Conditions. [In:] Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), DOI: 10.1109/I2MTC43012.2020.9128489.
  11. Chakraborty B., Billol K.S., Process-integrated steel ladle monitoring, based on infrared imaging – A robust approach to avoid ladle breakout. “Quantitative InfraRed Thermography Journal”, 2020, 169–191, DOI: 10.1080/17686733.2019.1639112.
  12. Tomoyuki T., Coaxiality Evaluation of Coaxial Imaging System with Concentric Silicon–Glass Hybrid Lens for Thermal and Color Imaging. “Sensors”, Vol. 20, No. 20, 2020, 20, DOI: 10.3390/s20205753.
  13. Wollack J.E., Cataldo G., Miller K.H., Quijada A.M., Infrared properties of high-purity silicon. “Optics Letters”, Vol. 45, No. 17, 2020, 4935–4938, DOI: 10.1364/OL.393847.
  14. Singh J., Arora A.S., Effectiveness of active dynamic and passive thermography in the detection of maxillary sinusitis, “Quantitative InfraRed Thermography Journal”, Vol. 18, No. 4, 2021, 213–225, DOI: 10.1080/17686733.2020.1736456.
  15. Holliday T., Kay J.A., Understanding infrared windows and their effects on infrared readings, Conference Record of 2013 Annual IEEE Pulp and Paper Industry Technical Conference (PPIC), 2013, 26–33, DOI: 10.1109/PPIC.2013.6656039.
  16. Madding R.P., IR Window Transmittance Temperature Dependence, [www.exiscan.com/images/files/TechNotes/ Madding-IR_window_Transmittance_Temperature_ Dependance.pdf].
  17. Nguyen T.H., et al, Enhancing the Quality of the Characteristic Transmittance Curve in the Infrared Region of Range 2.5–7µm of the Optical Magnesium Fluoride (MgF2 ) Ceramic Using the Hot-Pressing Technique in a Vacuum Envi ronment, “Advances in Materials Science and Engineering”, 2020, DOI: 10.1155/2020/7258431.
  18. Zarei Moghadam R., Ahmadvand H., Optical and Mechanical Properties of ZnS/Ge0.1C0.9 Antireflection Coating on Ge Substrate. “Iranian Journal of Science and Technology, Transactions A: Science”, Vol. 45, 2021, 1491–1497, DOI: 10.1007/s40995-021-01093-5.
  19. Kawor E.T., Matteï S., Emissivity measurements for Nextel Velvet Coating 811-21 between –36 °C and 82 °C, 15 ECTP Proceedings, DOI: 10.1068/htwu385.
  20. PN-HD 60364-5-52:2011 – Instalacje elektryczne niskiego napięcia – Część 5-52: Dobór i montaż wyposażenia elektrycznego – Oprzewodowanie.
  21. Chen K., Zhang Y., Wang H., Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding, “Ultrasonics”, Vol. 75, 2017, 9–21. DOI: 10.1016/j.ultras.2016.11.004.
  22. [https://iriss.com/emsd-cast-products/vp-series/vpfc-series] – VPFC Series. Crystal Infrared Windows.
  23. [www.fluke.com/en-us/product/thermal-imaging/ir-windows/fluke-100-clkt] – Fluke 100 CLKT IR Window for Outdoor and Indoor Applications.
  24. [www.thermokameras.com/Verkauf/Flir%20e-Serie/Datenblatt%20FLIR%20E50%20engl.pdf] – Technical Data FLIR E50.
  25. Tran Q.H., Han D., Kang C., Haldar A., Huh J., Effects of Ambient Temperature and Relative Humidity on Subsurface Defect Detection in Concrete Structures by Active Thermal Imaging. “Sensors”, Vol. 17, No. 8, 2017, DOI: 10.3390/s17081718.
  26. Minkina W., Pomiary termowizyjne – przyrządy i metody, Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2004.
  27. [www.geass.com/wp-content/uploads/filebase/flir/termocamere/e40-e50-e60_comuni/Manuale-termocamere-Flir-E40-E50-E60.pdf] – User’s manual FLIR Exx series.
  28. Minkina W., Dudzik S., Infrared Thermography Errors and Uncertainties; John Wiley & Sons, Ltd.: Chichester, UK, 2009.
  29. Minkina W., Klecha D., Atmospheric transmission coefficient modelling in the infrared for thermovision measure ment, “Journal of Sensors and Sensor System”, Vol. 5, 2016, 17–23, DOI: 10.5194/jsss-5-17-2016.
  30. Więcek B., de Mey G., Termowizja w podczerwieni. Podstawy i zastosowania, Wydawnictwo PAK,