System Architecture for Development and Supervision of Robotic Astronomical Telescope

eng Artykuł w języku angielskim DOI: 10.14313/PAR_246/43

Patryk Bartkowiak , Radosław Patelski , Marta Kwiatkowska , wyślij Dariusz Pazderski Poznan University of Technology, Institute of Automatic Control and Robotics, Piotrowo 3a, 60-965 Poznan

Pobierz Artykuł

Abstract

In this paper the novel control and communication scheme designed to ease the development and maintenance of the robotic astronomical telescope device is presented. The proposed solution allows the user to remotely access any signal in the controller of the telescope without imposing any additional overhead during telescope operation. The implemented scheme can be used by both an automated control system and human operators for easy supervision, control, and maintenance of the device.

Keywords

Condition Monitoring, Embedded computer control systems and applications, Fault detection and diagnosis, remote servicing, tele-maintenance

Architektura Systemu do zadań Rozwoju i Nadzoru Zrobotyzowanego Teleskopu Astronomicznego

Streszczenie

Artykuł przedstawia nowy system sterowania i komunikacji zaprojektowany w celu usprawnienia rozwoju i utrzymania zrobotyzowanego montażu teleskopu astronomicznego. Proponowane rozwiązanie umożliwia użytkownikowi zdalny dostęp do dowolnych sygnałów wewnątrz sterownika bez zwiększonego obciążenia podczas pracy systemu. Zaimplementowane rozwiązanie może być wykorzystywane zarówno przez automatyczny system nadzorujący, jak i przez użytkownika lub operatora, do nadzoru, sterowania i utrzymania urządzenia.

Słowa kluczowe

kontrola warunków pracy, sterowanie w systemach wbudowanych, wykrywanie błędów i diagnoza, zdalne sterowanie, zdalne utrzymanie

Bibliografia

  1. Abareshi B., Marshall R., Gott S., Sprayberry D., Cantarutti R., Joyce D., Williams D., Probst R., Reetz K., Paat A., et al., A new telescope control software for the Mayall 4-meter telescope, „Software and Cyberinfrastructure for Astronomy IV”, Vol. 9913, 2016, 645–656. SPIE, DOI: 10.1117/12.2233087.
  2. Cochran R., Marinescu C., Riesch C., Synchronizing the Llinux system time to a PTP hardware clock. IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, 2011, 87–92, DOI: 10.1109/ISPCS.2011.6070158.
  3. Edwards P., Amy S., Brodrick D., Carretti E., Hoyle S., Indermuehle B., McConnell D., Mader S., Mirtschin P., Preisig B., et al., Remote access and operation of telescopes by the scientific users. „Observatory Operations: Strategies, Processes, and Systems V”, Vol. 9149, 2014, International Society for Optics and Photonics, DOI: 10.1117/12.2058794.
  4. Gawron T., Kozłowski K., Semi-automated synthesis of control system software through graph search, „Advanced, Contemporary Control”, 2020, 1092–1103, Springer, DOI: 10.1007/978-3-030-50936-1_91.
  5. Hohenkerk C.Y., SOFA and the algorithms for transformations between scales & between systems. [In:] H. Schuh, S. Boehm, T. Nilsson, N. Capitaine (eds.), „Proc. of Journées Systémes de Référence Spatiotemporels 2011”, 2012, 21–24.
  6. Ivanescu L., Baibakov K., O’Neill N.T., Blanchet J.P., Blanchard Y., Saha A., Rietze M., Schulz K.H., Challenges in operating an Arctic telescope. „Ground-based and Airborne Telescopes V”, Vol. 9145, 2014, 1489–1509, SPIE, DOI: 10.1117/12.2071000.
  7. Katal A., Wazid M., Goudar R.H., Big data: Issues, challenges, tools and Good practices. [In:] 2013 Sixth International Conference on Contemporary Computing (IC3), 2013, 404–409, DOI: 10.1109/IC3.2013.6612229.
  8. Kozlowski K., Pazderski D., Krysiak B., Jedwabny T., Piasek J., Kozlowski S., Brock S., Janiszewski D., Nowopolski K., High precision automated astronomical mount. [In:] Conference on Automation, 2019, 299–315, Springer, DOI: 10.1007/978-3-030-13273-6_29.
  9. Kozłowski S., Pazderski D., Krysiak B., Patelski R., Jedwabny T., Kozłowski K., Sybis M., SkyLab: Research and development facility for ground based observations. „Ground-based and Airborne Telescopes VIII”, Vol. 11445, 2020, 1399–1408, SPIE, DOI: 10.1117/12.2576332.
  10. Krysiak B., Pazderski D., Kozłowski S., Kozłowski K., High efficiency direct-drive mount for space surveillance and NEO applications. „Publications of the Astronomical Society of the Pacific”, Vol. 132, No. 1015, 2020, DOI: 10.1088/1538-3873/ab9cc5.
  11. Marchiori G., Formentin F., Rampini F., Reliability-centered maintenance for ground-based large optical telescopes and radio antenna arrays. „Groundbased and Airborne Telescopes V”, Vol. 9145, 2014, 1346–1354, SPIE, DOI: 10.1117/12.2057593.
  12. Sadeh I., Dezman D., Oya I., Pietriga E., Schwarz J., The Graphical User Interface of the Operator of the Cherenkov Telescope Array. [In:] Proc. of International Conference on Accelerator and Large Experimental Control Systems (ICA LEPCS’17), Barcelona, Spain, 8-13 October 2017, 186–191. JACoW, 2018, DOI: 10.18429/JACoW-ICALEPCS2017-TUBPL06.
  13. Story K., Leitch E., Ade P., Aird K., Austermann J., Beall J., Becker D., Bender A., Benson B., Bleem L., et al., South Pole Telescope software systems: control, monitoring, and data acquisition. „Software and Cyberinfrastructure for Astronomy II”, Vol. 8451, 2012, International Society for Optics and Photonics, DOI: 10.1117/12.925808.
  14. Vallado D.A., Crawford P.S., Hujsak R., Kelso T.S., Revisiting Spacetrack Report #3. [In:] AIAA Astrodynamics Specialist Conference, 2006.