Potential of Indirect Regenerative Evaporative Cooling System (M-Cycle) for Electronic Applications

eng Artykuł w języku angielskim DOI: 10.14313/PAR_249/19

wyślij Robert Olbrycht , Marcin Kałuża , Mariusz Felczak , Dmytro Levchenko , Bogusław Więcek Łódź University of Technology, Institute of Electronics, Wólczańska 211/215, 90-924 Łódź, Poland

Pobierz Artykuł


The article presents a simple prototype system based on the concept of indirect regenerative evaporative cooling (IREC) thermodynamic cycle for electronics applications. The key problem of selecting porous capillary material is discussed and preliminary experimental results are presented using IR thermography. The presented research is an initial step towards the development of a laboratory-validated, fully operational IREC system for high-power electronics.


evaporative cooling, heat and mass transfer, IR thermography, porous and capillary materials

Możliwości zastosowania systemu IREC (pracującego w cyklu M) do chłodzenia układów elektronicznych


W artykule przedstawiono prototypowy układ chłodzenia oparty na koncepcji cyklu termodynamicznego pośredniego regeneracyjnego chłodzenia wyparnego (IREC) do zastosowań w elektronice. Omówiono kluczowy problem doboru porowatego materiału kapilarnego i przedstawiono wstępne wyniki eksperymentów z wykorzystaniem termografii w podczerwieni. Przedstawione badania stanowią wstępny krok w kierunku opracowania zweryfikowanego laboratoryjnie, w pełni funkcjonalnego systemu IREC do odprowadzania ciepła w systemach elektronicznych dużej mocy

Słowa kluczowe

chłodzenie wyparne, materiały porowate i kapilarne, termografia w podczerwieni, wymiana ciepła i masy


  1. Levchenko D., Yurko I., Artyukhov A., Baga V., Maisotsenko cycle applications for multistage compressors cooling. IOP Conference Series: Material Science and Engineerings, Vol. 233, 2017, DOI: 10.1088/1757-899X/233/1/012023.
  2. Maisotsenko V. et. al., Method of indirect-evaporative air cooling in household electrical appliances, Proceedings of World Electrotechnical Congress, Moscow, USSR, 1977.
  3. Maisotsenko V. et. al., Air Cooling Device for Indirect Evaporative Cooling, USSR Patent 979,796.
  4. Mahmood M.H., Sultana M., Miyazaki T., Koyama S., Maisotsenko V.S., Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling, “Renewable and Sustainable Energy Reviews”, Vol. 66, 2016, 537–555, DOI: 10.1016/j.rser.2016.08.022.
  5. Dizaji H.S., Hu E.J., Chen L., A comprehensive review of the Maisotsenko-cycle based air conditioning systems, “Energy”, Vol. 156, 2018, 725–749, DOI: 10.1016/j.energy.2018.05.086.
  6. Sajjad U. et al., A review of recent advances in indirect evaporative cooling technology, “International Communications in Heat and Mass Transfer”, Vol. 122, 2021, DOI: 10.1016/j.icheatmasstransfer.2021.105140.
  7. Gorshkov V., Systems Based on Maisotsenko Cycle: Coolerado Cooler, BSc thesis, Building Services Engineering, Mikkeli University of Applied Sciences, December 2012.
  8. Pacak A., Worek W., Review of Dew Point Evaporative Cooling Technology for Air Conditioning Applications, “Applied Sciences”, Vol. 11, No. 3, 2021, DOI: 10.3390/app11030934.
  9. Bi Y., Wang Y., Ma X., Zhao X., Investigation on the Energy Saving Potential of Using a Novel DewPoint Cooling System in Data Centres, “Energies”, Vol. 10, No. 11, 2017, DOI: 10.3390/en10111732.
  10. Pandelidis D., Cichoń A., Pacak A., Anisimov S., Drąg P., Performance comparison between counter and cross‐flow indirect evaporative coolers for heat recovery in air conditioning systems in the presence of condensation in the product air channels, “International Journal of Heat and Mass Transfer”, Vol. 130, 2019, 757–777, DOI: 10.1016/j.ijheatmasstransfer.2018.10.134.
  11. Duan Z. et. al., Indirect evaporative cooling: Past, present and future potentials, “Renewable and Sustainable Energy Reviews”, Vol. 16, No. 9, 2012, 6823–6850, DOI: 10.1016/j.rser.2012.07.007.
  12. De Antonellis S., Cignatta L., Facchini C., Liberati P., Effect of heat exchanger plates geometry on performance of an indirect evaporative cooling system, “Applied Thermal Engineering”, Vol. 173, 2020, DOI: 10.1016/j.applthermaleng.2020.115200.
  13. Xu P., Ma X., Zhao X., Fancey K., Experimental investigation of a super performance dew point aircooler, “Applied Energy”, Vol. 203, 2017, 761–777, DOI: 10.1016/j.apenergy.2017.06.095.
  14. Waqas M.A. et. al., Performance enhancement of a cross flow dew point indirect evaporative cooler with circular finned channel geometry, “Journal of Building Engineering”, Vol. 35, 2021, DOI: 10.1016/j.jobe.2020.101980.
  15. Jia L., Liu J., Wang C., Cao X., Zhang Z., Study of the thermal performance of a novel dew point evaporative cooler, “Applied Thermal Engineering”, Vol. 160, 2019, DOI: 10.1016/j.applthermaleng.2019.114069.
  16. Lee J., Lee D.-Y., Experimental study of a counter flow regenerative evaporative cooler with finned channels, “International Journal of Heat and Mass Transfer”, Vol. 65, 2013, 173–179, DOI: 10.1016/j.ijheatmasstransfer.2013.05.069.
  17. Lv J., Xu H., Xu T., Liu H., Qin J., Study on the performance of a unit dew-point evaporative cooler with fibrous membrane and its application in typical regions, “Case Studies in Thermal Engineering”, Vol. 24, 2021, DOI: 10.1016/j.csite.2021.100881.
  18. Ranjan D. et al, Vapor generation via porous nanochannel wicks, “Cell Reports Physical Science”, Vol. 3, No. 2, 2022, DOI: 10.1016/j.xcrp.2022.100738.
  19. Liu R., Liu Z., Enhanced Evaporation of Ultrathin Water Films on Silicon-Terminated Si3 N4 Nanopore Membranes, “Langmuir”, Vol. 37, No. 3, 2021, 10046−10051, DOI: 10.1021/acs.langmuir.1c0121.
  20. Xia G., Wang J., Zhou W., Ma D., Wang J., Orientation effects on liquid-vapor phase change heat transfer on nanoporous membranes, “International Communications in Heat and Mass Transfer”, Vol. 119, 2020, DOI: 10.1016/j.icheatmasstransfer.2020.104934.
  21. Hanks D.F., Lu Z., Sircar J., Salamon T.R., Antao D.S., Bagnall K.R., Barabadi B., Wang E.N., Nanoporous membrane device for ultra high heat flux thermal management, “Microsystems & Nanoengineering”, Vol. 4, No. 1, 2018, DOI: 10.1038/s41378-018-0004-7.
  22. Li R., Wang J., Xia G., New Model for Liquid Evaporation and Vapor Transport in Nanopores Covering the Entire Knudsen Regime and Arbitrary Pore Length, “Langmuir”, Vol. 37, No. 6, 2021, 2227−2235, DOI: 10.1021/acs.langmuir.1c00023.
  23. Maisotsenko V., Reyzin I., The Maisotsenko Cycle for Electronics Cooling, 2005 International Electronic Packaging Technical Conference and Exhibition, IPACK2005, 415– 424, DOI: 10.1115/IPACK2005-73283.
  24. Weerts B.A. et. al., Green Data Center Cooling: Achieving 90% Reduction: Airside Economization and Unique Indirect Evaporative Cooling, 2012 IEEE Green Technology Conference, USA, DOI: 10.1109/GREEN.2012.6200950.
  25. Bi Y., Wang Y., Ma X., Zhao X., Investigation on the Energy Saving Potential of Using a Novel Dew Point Cooling System in Data Centres, “Energies”, Vol. 10, No. 11, 2017, DOI: 10.3390/en10111732.
  26. Dizaji H.S. et. al., Proposing the concept of mini Maisotsenko cycle cooler for electronic cooling purposes; experimental study, “Case Studies in Thermal Engineering”, Vol. 27, 2021, DOI: 10.1016/j.csite.2021.101325.
  27. Chen Y., Luo Y., Yang H., A simplified analytical model for indirect evaporative cooling considering condensation from fresh air: Development and application, “Energy and Buildings”, Vol. 108, 2015, 387–400, DOI: 10.1016/j.enbuild.2015.09.054.
  28. Tariq R., Benarab F.Z., Mathematical Modelling and Numerical Simulation of Maisotsenko Cycle, World Academy of Science, Engineering and Technology, “International Journal of Mechanical and Mechatronics Engineering”, Vol. 11, No. 9, 2017, 1618–1625.
  29. Persad A., Ward Ch., Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation. “Chemical Reviews”. Vol. 116, No. 14, 2016, 7727-8314, DOI: 10.1021/acs.chemrev.5b00511.