Symulacja inspekcji przestrzennej ekstremalnie modularnym hiper-redundantnym manipulatorem Arm-Z

pol Artykuł w języku polskim DOI: 10.14313/PAR_257/39

Jacek Szklarski *, Ela Zawidzka *, Tomasz Ponikiewski **, wyślij Machi Zawidzki *** * Instytut Podstawowych Problemów Techniki PAN, Adolfa Pawińskiego 5B, 02-106 Warszawa ** Politechnika Śląska, Wydział Budownictwa, ul. Akademicka 5, 44-100 Gliwice *** Sieć Badawcza Łukasiewicz – Przemysłowy Instytut Automatyki i Pomiarów PIAP, Al. Jerozolimskie 202, 02-486 Warszawa

Pobierz Artykuł

Streszczenie

Arm-Z to koncepcja hiper-redundantnego manipulatora robotycznego składającego się z identycznych modułów o jednym stopniu swobody (1-DOF) i realizującego dowolne ruchy końcówką w przestrzeni roboczej. Dwie zasadnicze zalety Arm-Z to oszczędność (dzięki masowej produkcji identycznych elementów) oraz odporność na awarie (zepsute moduły mogą być łatwo zastąpione). Z drugiej strony, sterowanie tak bardzo nieliniowym systemem jest znacznie trudniejsze niż typowym manipulatorem przemysłowym i wymaga zastosowania odpowiednich technik optymalizacyjnych. W artykule przedstawiono wstępne wyniki implementacji autorskiego algorytmu opartego na metodzie gradientu prostego do znajdowania trajektorii przejścia między zadanymi stanami Arm-Z. Przykładowym zadaniem dla manipulatora jest bezpieczne wejście do przestrzeni roboczej, inspekcja zadanych pięciu punktów oraz bezpieczne opuszczenie przestrzeni roboczej. Ten eksperyment jest trójwymiarową wersją realizowanej wcześniej inspekcji dwuwymiarowej.

Słowa kluczowe

Arm-Z, inspekcja, manipulator hiper-redundantny

Simulation of Spatial Inspection with Arm-Z – the Extremely Modular Hyper-Redundant Manipulator

Abstract

Arm-Z is a concept of a hyper-redundant robotic manipulator composed of congruent modules with one degree of freedom (1-DOF) each. The end-effector of Arm-Z is capable of performing any movements in the workspace. The two main advantages of Arm-Z are: economic (due to the potential mass production of the modules) and robustness (since the broken modules can be easily replaced). On the other hand, controlling such a highly non-linear system is much more difficult than a typical industrial manipulator and requires the use of appropriate optimization techniques. This paper presents the preliminary results of the implementation of an algorithm based on the simple gradient method for finding the transition trajectory between the given states of Arm-Z. An example task for the manipulator is presented: Arm-Z is to safely enter the workspace, inspect the five points given, and safely leave the workspace. This experiment is a three-dimensional version of the previously implemented two-dimensional inspection.

Keywords

Arm-Z, hyper-redundant manipulator, inspection

Bibliografia

  1. Zawidzka E., Zawidzki M., Discrete (Two-State) Modular Hyper-Redundant Planar Manipulator, “Computer Assisted Methods in Engineering and Science”, Vol. 29, No. 4, 2022, 397–407, DOI: 10.24423/cames.550.
  2. Gray J., The mechanism of locomotion in snakes, “Journal of Experimental Biology”, Vol. 23, No. 2, 1946, 101–120, DOI: 10.1242/jeb.23.2.101.
  3. Hirose S., Biologically Inspired Robots: Snake-Like Locomotors and Manipulators, Oxford University Press, 1993.
  4. Hirose S., Design of hyper-redundant arm, Robotics Research: The Seventh International Symposium, 1996, 548–557, DOI: 10.1007/978-1-4471-0765-1_61.
  5. Ijspeert A.J., Crespi A., Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model, Proceedings of the 2007 IEEE International Conference on Robotics and Automation, 262–268, DOI: 10.1109/ROBOT.2007.363797.
  6. Chirikjian G.S., Burdick J.W., Design and experiments with a 30 DOF robot, Proceedings IEEE International Conference on Robotics and Automation, 1993, DOI: 10.1109/ROBOT.1993.291862.
  7. Klaassen B., Paap K.L., GMD-SNAKE2: a snake-like robot driven by wheels and a method for motion control, Proceedings 1999 IEEE International Conference on Robotics and Automation, Vol. 4, 1999, 3014–3019, DOI: 10.1109/ROBOT.1999.774055.
  8. Miller G.S.P., Snake robots for search and rescue, [In:] Neurotechnology for Biomimetic Robots, 2002, 271–284, DOI: 10.7551/mitpress/4962.003.0023.
  9. Choi H.R., Ryew S.M., Robotic system with active steering capability for internal inspection of urban gas pipelines, “Mechatronics”, Vol. 12, No. 5, 2002, 713–736, DOI: 10.1016/S0957-4158(01)00022-8.
  10. Tsakiris D.R., Sfakiotakis M., Menciassi A., La Spina G., Dario P., Polychaete-like undulatory robotic locomotion, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, 3018–3023, DOI: 10.1109/ROBOT.2005.1570573.
  11. Melsaac K.A., Ostrowski J.P., A geometric approach to anguilliform locomotion: modelling of an underwater Eel robot, Proceedings 1999 IEEE International Conference on Robotics and Automation, Vol. 4, 1999, 2843–2848, DOI: 10.1109/ROBOT.1999.774028.
  12. Wilbur C., Vorus W., Cao Y., Currie S.N., A lamprey-based undulatory vehicle, [In:] Neurotechnology for Biomimetic Robots, 2002, 285–296, DOI: 10.7551/mitpress/4962.003.0024.
  13. Li B., Ma S., Ye C., Yu S., Zhang G., Gong H., Development of an amphibious snake-like robot, 8th World Congress on Intelligent Control and Automation, China, 2010, DOI: 10.1109/WCICA.2010.5553836.
  14. Crespi A., Badertscher A., Guignard A., Ijspeert A.J., AmphiBot I: an amphibious snake-like robot, “Robotics and Autonomous Systems”, Vol. 50, No. 4, 2005, 163–175, DOI: 10.1016/j.robot.2004.09.015.
  15. Chirikjian G.S., Burdick J.W., An obstacle avoidance algorithm for hyper-redundant manipulators, Proceedings IEEE International Conference on Robotics and Automation, 1990, 625–631, DOI: 10.1109/ROBOT.1990.126052.
  16. Siciliano B., Khatib O., Springer Handbook of Robotics, Springer, 2008, DOI: 10.1007/978-3-540-30301-5.
  17. Murray R.M., Li Z., Sastry S.S., A Mathematical Introduction to Robotic Manipulation, CRC Press, 1994, DOI: 10.5555/561828.
  18. Rolf M., Steil J.J., Efficient exploratory learning of inverse kinematics on a bionic elephant trunk, “IEEE Transactions on Neural Networks and Learning Systems”, Vol. 25, No. 6, 2014, 1147–1160, DOI: 10.1109/TNNLS.2013.2287890.
  19. Melingui A., Escande C.,Benoudjit N., Merzouki R., Mbede J.B., Qualitative approach for forward kinematic modeling of a Compact Bionic Handling Assistant trunk, “IFAC Proceedings Volumes”, Vol. 47, No. 3, 2014, 9353–9358, DOI: 10.3182/20140824-6-ZA-1003.01758.
  20. Falkenhahn V., Hildebrandt A., Neumann R., Sawodny O., Dynamic Control of the Bionic Handling Assistant, “IEEE/ASME Transactions on Mechatronics”, Vol. 22, No. 1, 2017, 6–17, DOI: 10.1109/TMECH.2016.2605820.
  21. Galicki M., A closed solution to the inverse kinematics of redundant manipulators, “Mechanism and Machine Theory”, Vol. 26, No. 2, 1991, 221–226, DOI: 10.1016/0094-114X(91)90085-I.
  22. Jacak W., A discrete kinematic model of robots in the Cartesian space, “IEEE Transactions on Robotics and Automation”, Vol. 5, No. 4, 1989, 435–443, DOI: 10.1109/70.88058.
  23. Jacak W., Strategies of searching for collision-free manipulator motions: automata theory approach, “Robotica”, Vol. 7, No. 2, 1989, 129–138, DOI: 10.1017/S0263574700005439.
  24. Wang J., Formal methods in computer science, Chapman and Hall/CRC, 2019, DOI: 10.1201/9780429184185.
  25. Galicki M., Morecki A., Finding collision-free trajectory for redundant manipulator by local information available, RoManSy 9, 1993, 61–71, DOI: 10.1007/BFb0031432.
  26. Chirikjian G.S., Burdick J.W., Hyper-redundant robot mechanisms and their applications, Proceedings IROS ‘91 of IEEE/RSJ International Workshop on Intelligent Robots and Systems, DOI: 10.1109/IROS.1991.174447.
  27. Chirikjian G.S., Burdick J.W., A hyper-redundant manipulator, “IEEE Robotics & Automation Magazine”, Vol. 1, No. 4, 1994, 22–29, DOI: 10.1109/100.388263.
  28. Kimura S., Tsuchiya S., Takegai T., Iizuka N., Moritani K., Nishida S., Kawashima N., Okamura R., Hyper redundant modular manipulator arm, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies, Vol. 4, 2000, 2467–2472, DOI: 10.1109/IECON.2000.972384.
  29. Zawidzki M., Nagakura T., Arm-Z: a modular virtual manipulative, [In:] H.-P. Schröcker, editor, Proceedings of the 16th International Conference on Geometry and Graphics, 2014, 75–80.
  30. Hollerbach J., Suh K., Redundancy resolution of manipulators through torque optimization, IEEE Journal on Robotics and Automation, Vol. 3, No. 4, 1987, 308–316, DOI: 10.1109/JRA.1987.1087111.
  31. Shamir T., Yomdin Y., Repeatability of redundant manipulators: Mathematical solution of the problem, “IEEE Transactions on Automatic Control”, Vol. 33, No. 11, 1988, 1004–1009, DOI: 10.1109/9.14412.
  32. Baillieul J., Kinematic programming alternatives for redundant manipulators, Proceedings of 1985 IEEE International Conference on Robotics and Automation, Vol. 2, 1985, 722–728, DOI: 10.1109/ROBOT.1985.1087234.
  33. Wang Z., Kazerounian K., An efficient algorithm for global optimization in redundant manipulations, “Journal of Mechanical Design”, Vol. 111, No. 4, 1989, 488–493, DOI: 10.1115/1.3259026.
  34. Suh K., Hollerbach J., Local versus global torque optimization of redundant manipulators, Proceedings of 1987 IEEE International Conference on Robotics and Automation, Vol. 4, 1987, 619–624, DOI: 10.1109/ROBOT.1987.1087955.
  35. Ma O., Angeles J., The concept of dynamic isotropy and its applications to inverse kinematics and trajectory planning, Proceedings of IEEE International Conference on Robotics and Automation, 1990, 481–486, DOI: 10.1109/ROBOT.1990.126024.
  36. Chirikjian G.S., Burdick J.W., Kinematically optimal hyper-redundant manipulator configurations, “IEEE Transactions on Robotics and Automation”, Vol. 11, No. 6, 1995, 794–806, DOI: 10.1109/70.478427.
  37. Konietschke R., Hirzinger G., Inverse kinematics with closed form solutions for highly redundant robotic systems, 2009 IEEE International Conference on Robotics and Automation, 2009, 2945–2950, DOI: 10.1109/ROBOT.2009.5152706.
  38. Coumans E., Bai Y., Pybullet, a python module for physics simulation for games, robotics and machine learning, [http://pybullet.org, 2016–2021].
  39. Zawidzka E., Szklarski J., Zawidzki M., Animation: Arm-Z inspects 5 points inside the box, 2024, [https://youtu.be/8ho7o-JeP2c].
  40. Zawidzki M., Szklarski J., Transformations of Arm-Z modular manipulator with Particle Swarm Optimization, “Advances in Engineering Software”, Vol. 126, 2018, 147–160, DOI: 10.1016/j.advengsoft.2018.05.003.