Robowąż - nowy trend w robotyce mobilnej

pol Article in Polish DOI:

send Jakub Bartoszek Przemysłowy Instytut Automatyki i Pomiarów w Warszawie

Download Article

Streszczenie

Opracowanie dotyczy zagadnienia sterowania ruchem wieloczłonowego, szeregowego robota mobilnego. Konstrukcja oraz schemat kinematyczny robota wzorowane są na morfologii węża. W opracowaniu w pierwszej części omówione zostały powody podjęcia tego tematu badań. W części drugiej wymienione zostały znane konstrukcje, na podstawie których opracowany został algorytm sterowania oraz wytłumaczone zostały metody podziału tych konstrukcji. W części trzeciej, dotyczącej algorytmów sterowania, opisana została ogólna budowa ciała węża oraz jego sposób poruszania się. Opisane zostały również cztery główne sposoby poruszania się węży ze względu na ich możliwości lokomocyjne oraz możliwości implementacji. W dalszej części tego rozdziału omówiony został proponowany algorytm sterowania. Przedstawione zostały wyniki badań symulacyjnych oraz konstrukcja mechaniczna.

Słowa kluczowe

algorytm sterowania, robot o morfologii węża, wieloczłonowy robot mobilny

Robosnake - New Trend In Mobile Robotics

Abstract

This elaborations covers an issue of motion control, of serial mobile robot. Design and kinematic diagram of the robot are modeled on the morphology of the snake. The first part discusses the reasons for this research topic. The second section lists the known structures on which the control algorithms has been developed. The method of the division of these structures have been explained. In the third part, concerning the control algorithms, has been described the overall structure of the snake and its way of moving. Also the four main snakes locomotion methods has been described due to their motion capabilities and possibilities of implementation. Further in this chapter the proposed control algorithm is being discussed. The results of simulation and mechanical design are presented.

Keywords

control algorithm, serial mobile robot, snake morphology

Bibliography

  1. PIAP’s YouTube Channel, http://www.youtube.com/user/osmpiap.
  2. Z. Bayraktaroglu, P. Blazevic, Understanding snakelike locomotion through a novel push - point approach, „J. Dyn. Syst. - Trans. ASME” 127 (1), 2005, 146-152.
  3. F. Chernousko, Modeling of snake - like locomotion, „Appl. Math. Comput.” 164 (2), 2005, 415-434.
  4. G.S. Chirikjian, J. Burdick, The kinematics of hyper - redundant robot locomotion, „IEEE Trans. Robot. Autom.” 11 (6), 1995, 781-793.
  5. H. Date, Y. Takita, Adaptive locomotion of a snake like robot based on curvature derivatives [w] Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2007, 3554-3559.
  6. H. Date, Y. Takita, Control of 3d snake-like locomotive mechanism based on continuum modeli [w] Proc. ASME 2005 International Design Engineering Technical Conferences, 2005.
  7. I. Grabec, Control of creeping snake-like robot [w] Proc. 7th Int. Workshop on Advanced Motion Control, 2002, 513-526.
  8. J. Gray, The mechanism of locomotion in snakes, „J. Exp. Biol.” 23 (2), 1946, 101-120.
  9. R. Hatton, H. Choset, Approximating displacement with the body velocit yintegral, „Proc. Robotics: Science and Systems”, 2009.
  10. G.P. Hicks, Modeling and control of a snake-like serial-link structure, Ph. D. disseration, 2003.
  11. S. Hirose, Biologically Inspired Robots: Snake-Like Locomotors and Manipulators, Oxford: Oxford University Press, 1993.
  12. M. Ishikawa, Iterative feedback control os snake - like robot based on principal fiber bundle modeling, „Int. J. Advanced Mechatronic Systems” 1 (3), 2009, 175-182.
  13. T. Kane, D. Lecison, Locomotion of snakes: A mechanical ‘explanation’, „Int. J. Solid Struct.” 37 (41), 2000, 5829-5837.
  14. S. Kelly, R.M. Murray, Geometric phases and robotic locomotion, „J. Robotic Systems” 12 (6), 1995.
  15. P. Krishnaprasad, D. Tsakiris, G-snakes: Nonholonomic kinetic chains on lie groups [w] Proc. 33rd IEEE Conf. Decision and Control, 3, 1994, 2955-2960.
  16. J. Li, J. Shan, Passivity control of underactuated snake-like robots [w] Proc. 7th World Congress on Inteligent Control and Automation, 2008, 485-490.
  17. P. Liljeback, Fundamental properties of snake robot locomotion, [w] Proc. IEEE / RSJ Int. Conf. Intelligent Robots and Systems, 2010, 2876-2883.
  18. P. Liljeback, A simplified model of planar snake robot locomotion [w] Proc. IEEE / RSJ Int. Conf. Intelligent Robots and Systems, 2010, 2876-2883.
  19. P. Liljeback, K.Y. Pattersen, O. Stavdahl, J.T. Gravdahl, Controllability and stability analysis of planar snake robot locomotion, „IEEE Trans. Automatic Control” 56 (6), 2011, 1365-1380.
  20. P. Liljeback, K.Y. Pettersen, O. Stavdahl, J.T. Gravdahl, Hybrid modelling and control of obstacle - aided snake robot locomotion, „IEEE Trans. Robotics” 26 (5), 2010, 781-799.
  21. P. Liljeback, O. Stavdahl, K.Y. Pettersen, Modular pneumatic snake robot: 3D modelling, implementation and control, „Modeling, Identification and Control” 29 (1), 2008, 21-28.
  22. S. Ma, Analysis of creeping locomotion of a snakelike robot, „Adv. Robotics 15 (2), 2001.
  23. S. Ma, Analysis of snake movements forms for realization of snake-like robots [w] Proc. IEEE Int. Conf. Robotics and Automation 4, 1999, 3007-3013.
  24. S. Ma, Y. Ohmameuda, K. Inoue, Dynamic analysis of 3-dimensional snake robots [w] Proc. IEEE / RSJ Int. Conf. Intelligent Robots and Systems, 2004, 767-772.
  25. S. Ma, Y. Ohmameuda, K. Inoue, B. Li, Control of a 3 - dimensional snake-like robot [w] Proc. IEEE Int. Conf. Robotics and Automation 2, 2003, 2067-2072.
  26. S. Ma, N. Tadokoro, Analysis of creeping locomotion of a snake-like robot on a slope, „Autonomous Robots” 20, 2006, 15-23.
  27. F. Matsuno, K. Mogi, Redundancy controllable system and control of snake robots based on kinematic model [w] Proc. IEEE Int. Conf. Control Applications 5, 2000, 4791-4796.
  28. F. Matsuno, H. Sato, Trajectory tracking control of snake robots based on dynamic model [w] Proc. IEEE Int. Conf. on Robotic and Automation, 2005, 3029-3034.
  29. V. Mehta, S. Brennan, F. Gandhi, Experimentally verified optimal serpentine gait and hyperredundancy of a rigid-link snake robot, „IEEE Trans. on Robotics” 24 (2), 2008, 348-360.
  30. M. Nilsson, Serpentine locomotion on surfaces with uniform friction [w] Proc. IEEE / RSJ Int. Conf. Intelligent Robots and Systems, 2004, 1751-1755.
  31. J.P. Ostrowski, J. Burdick, The mechanics and control of undulatory robotic locomotion, Ph. D. disseration, 1996.
  32. P. Prautsch, T. Mita, Control and analysis of the gait of snake robots [w] Proc. IEEE Int. Conf. Control Applications, 1999.
  33. M. Saito, M. Fukaya, T. Iwasaki, Serpentine locomotion with robotic snakes, „IEEE Contr. Syst. Mag.” 22 (1), 2002, 64-81.
  34. Y. Shan, Y. Koren, Design and motion planning of a mechanical snake, „IEEE Trans. Syst. Man Cyb.” 23 (4), 1993, 1091-1100.
  35. Y. Shan, Y. Koren, Obstacle accommodation motion planning, „IEEE. Trans. Robotic. Autom.” 11 (1), 1995, 36-49.
  36. A. Shapiro, A. Greenfield, H. Choset, Frictional comiliance model development and experiments for snake robot climbing [w] Proc. IEEE Int. Conf. Robotics and Automation, 2007 574-579.
  37. M. Tanaka, F. Matsuno, Modeling and control of a snake robot with switching constraints, Sice Annual Conference, 2008.
  38. I. Tanev, T. Ray, A. Buller, Automated evolutionary design, robustenss, and adaptation of sidewinding locomotion of a simulated snake-like robot, „IEEE Trans. on Robotics” 21 (4), 2005, 632-645.
  39. A.A. Transeth, R.I. Leine, C. Glocker, K.Y. Perrersen, P. Liljeback, Snake robot obstacle aided locomotion: Modeling, simulation and experiments, „IEEE Trans. Rob.” 24 (1), 2008, 88-104.
  40. A.A. Transeth, R.I. Leine, C. Glocker, K.Y. Pettersen, 3D snake robot motion: Non-smooth modeling, simulations and experiments, „IEEE Trans. on Robotics” 24 (2), 2008, 361-376.
  41. J. Ute, K. Ono, Fast and efficient locomotion of a snake robot based on self - excitation principle [w] Proc. 7th Int. Workshop on Advanced Motion Control, 2002, 532-539.
  42. H. Yamada, S. Hirose, Study on the 3d shape of active cord mechanism [w] Proc. IEEE Int. Conf. Robotics and Automation, 2006, 2890-2895.