Robotyka: techniki, funkcje, rola społeczna Cz. 2. Aktualne możliwości robotów

pol Article in Polish DOI: 10.14313/PAR_247/5

send Cezary Zieliński Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych, Instytut Automatyki i Informatyki Stosowanej,

Download Article

Streszczenie

Aby ocenić, jaki wpływ będą miały roboty na społeczeństwo, należy skrupulatnie przeanalizować obecny stan wiedzy, a w szczególności wskazać fundamentalne problemy, które jeszcze nie zostały rozwiązane, mające istotne znaczenie dla potencjalnych zmian społecznych powodowanych rozwojem robotyki. Wspomniany wpływ zależy od inteligencji robotów, więc ten aspekt dominuje w przedstawionej tu analizie. Rozważania zostały podzielone na trzy części: 1) analizę czynników technicznych wpływających na inteligencję i bezpieczeństwo robotów, 2) analizę obecnych możliwości robotów, 3) analizę przewidywań dotyczących rozwoju robotyki, a w konsekwencji poglądów na skutki tego rozwoju dla społeczeństwa. Niniejszy artykuł poświęcony jest drugiemu z wymienionych tu trzech zagadnień.

Słowa kluczowe

robot przemysłowy, robot terenowy, robot usługowy

Robotics: Techniques, Functions, Social Role Part 2. Current Capabilities of Robots

Abstract

In order to assess the impact of robots on society, it is necessary to carefully analyze the state-of-the-art, and in particular the fundamental issues that have yet to be resolved, however having significant impact on the potential societal changes resulting from the development of robotics. The aforementioned impact depends on the level of intelligence of robots, so this aspect dominates in the presented analysis. The presentation has been divided into three parts: 1) analysis of technical factors affecting the intelligence and security of robots, 2) analysis of current capabilities of robots, 3) analysis of diverse predictions of how robotics will evolve, and thus the attitudes towards the influence of the result of this development on society. This part of the paper is devoted to the second of the above mentioned three issues.

Keywords

field robot, industrial robot, service robot

Bibliography

  1. Hanson Robotics Company Overview. www.hansonrobotics. com/wpcontent/uploads/2017/02/Hanson-Robotics-Overview.pdf, 2017.
  2. Waymo safety report: On the road to fully self-driving. https://storage.googleapis.com/sdc-prod/v1/safetyreport/ waymo-safety-report-2017.pdf, 2017.
  3. Alphabet X Mineral. https://x.company/projects/mineral/, 2022.
  4. Boston dynamics. www.bostondynamics.com/resources/ casestudies, 2022.
  5. Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin M., Ghemawat S., Irving G., Isard M., Kudlur M., Levenberg J., Monga R., Moore S., Murray D.G., Steiner B., Tucker P., Vasudevan V., Warden P., Wicke M., Yu Y., Zheng X., TensorFlow: A system for Large-Scale machine learning. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, November 2016. 265–283, USENIX Association.
  6. Ackerman E., For Better or Worse, Tesla Bot Is Exactly What We Expected; Tesla fails to show anything uniquely impressive with its new humanoid robot prototype. „IEEE Spectrum Analysis”, October 1 2022.
  7. Ackerman E., Robo-Ostrich Sprints to 100-meter World Record; Oregon State University’s Cassie is fastest bipedal robot ever to run the 100-meter dash. „IEEE Spectrum News”, September 28 2022.
  8. Adolphe M., Clerval J., Kirchof Z., Lacombe-Delpech R., Zagrodny B., Center of mass of human’s body segments. „Mechanics and Mechanical Engineering”, Vol. 21, No. 3, 2017, 485–497.
  9. Badger J.M., Hulse A., Thackston A., Advancing safe human-robot interactions with robonaut 2, 12th International Symposium on AI, Robotics and Automation in Space.
  10. Baker W., Kingston Z., Moll M., Badger J., Kavraki L., Robonaut 2 and you: Specifying and executing complex operations. IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), March 8–10 2017, DOI: 10.1109/ARSO.2017.8025204.
  11. Blain L., Riderless BMW R1200GS eerily makes its way around a test track. „New Atlas”, September 11 2018.
  12. Bledt G., Powell M., Katz B., Carlo J., Wensing P., Kim S., Mit cheetah 3: Design and control of a robust, dynamic quadruped robot. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 1–5 2018, 2245–2252, 10.1109/IROS.2018.8593885.
  13. Botta A., Cavallone P., Baglieri L., Colucci G., Tagliavini L., Quaglia G., A review of robots, perception, and tasks in precision agriculture. „Applied Mechanics”, Vol. 3, No. 3, 2022, 830–854, DOI: 10.3390/applmech3030049.
  14. Breazeal C., Emotion and sociable humanoid robots. „International Journal of Human-Computer Studies”, Vol. 59, No. 1-2, 2003, 119–155, DOI: 10.1016/S1071-5819(03)00018-1.
  15. Brooks R., I, Rodney Brooks, am a robot. „IEEE Spectrum”, Vol. 45, No. 6, 2008, 60–67, DOI: 10.1109/MSPEC.2008.4531466.
  16. Cieślak R., Morecki A., Elephant trunk type elastic manipulator – a tool for bulk and liquid materials transportation. „Robotica”, Vol. 17, No. 1, 1999, 11–16, DOI: 10.1017/S0263574799001009.
  17. Colling D., Dziedzitz J., Furmans K., Hopfgarten P., Markert K., Progress in autonomous picking as demonstrated by the amazon robotic challenge. Proceedings 15th International Material Handling Research Colloquium (IMHRC), July 24–26 2018.
  18. Coyle S., Majidi C., Leduc P., Hsia K., Bio-inspired soft robotics: Material selection, actuation, and design. „Extreme Mechanics Letters”, Vol. 22, 2018, 51-59, DOI: 10.1016/j.eml.2018.05.003.
  19. Critchlow A., Introduction to Robotics. Macmillan, New York, 1985.
  20. DARPA. DARPA subterranean challenge: Competition rules – final event. Defense Advanced Research Projects Agency Tactical Technology Office, May 25 2021.
  21. Das B., Wang Y., Isometric pull-push strengths in workspace: 1. strength profiles. „International Journal of Occupational Safety and Ergonomics”, Vol. 10, No. 1, 2004, 43–58, DOI: 10.1080/10803548.2004.11076594.
  22. Dickmanns E., Dynamic Vision for Perception and Control of Motion. Springer, London, 2007.
  23. Dickmanns E., Zapp A., Autonomous high speed road vehicle guidance by computer vision. „IFAC Proceedings Volumes”, Vol. 20, No. 5, 1987, 221–226, DOI: 10.1016/S1474-6670(17)55320-3.
  24. Fletcher L., Teller S., Olson E., Moore D., Kuwata Y., How J., Leonard J., Miller I., Campbell M., Huttenlocher D., Nathan A., Kline F.R., The MIT-Cornell collision and why it happened. „Journal of Field Robotics”, Vol. 25, No. 10, 2008, 775–807, DOI: 10.1002/rob.20266.
  25. Gillespie R., Colgate J., Peshkin M., A general framework for cobot control. „IEEE Transactions on Robotics and Automation”, Vol. 17, No. 4, 2001, 391–401, DOI: 10.1109/70.954752.
  26. Goertzel B., Cognitive synergy: A universal principle for feasible general intelligence. 8th IEEE International Conference on Cognitive Informatics, 2009, 464–468, DOI: 10.1109/COGINF.2009.5250694.
  27. Goertzel B., The Embodied Communication Prior: A characterization of general intelligence in the context of Embodied social interaction. 8th IEEE International Conference on Cognitive Informatics, 2009, 38–43, DOI: 10.1109/COGINF.2009.5250687.
  28. Goertzel B., OpenCogPrime: A cognitive synergy based architecture for artificial general intelligence. 8th IEEE International Conference on Cognitive Informatics, 2009, 60–68, DOI: 10.1109/COGINF.2009.5250807.
  29. Goertzel B., From abstract agents models to Real-World AGI architectures: Bridging the gap. T. Everitt, B. Goertzel, A. Potapov, red. Artificial General Intelligence, Springer International Publishing, 2017, 3–12.
  30. Goertzel B., Hanson D., Yu G., A software architecture for generally intelligent humanoid robotics. „Procedia Computer Science”, Vol. 41, 2014, 158–163, DOI: 10.1016/j.procs.2014.11.099.
  31. Goertzel B., Monroe E., Toward a general model of human-like general intelligence. „Common Model of Cognition Bulletin”, Vol. 1, No. 2, 2017, 344–347.
  32. Griffin T., Yeager E., Adoption of precision agriculture technology: A duration analysis. Proceedings of 14th International Conference on Precision Agriculture, International Society of Precision Agriculture, June 24–27 2018, 1–14.
  33. Guizzo E., Hiroshi Ishiguro: The man who made a copy of himself. „IEEE Spectrum”, Vol. 47, 2010, 40–44.
  34. Guizzo E., The Man Who Made a Copy of Himself: Hiroshi Ishiguro is Building Androids to Understand Humans – Starting with Himself. IEEE Spectrum, Vol. 52, 2010, 40–44.
  35. Hanson D., Olney A., Pereira I.A., Zielke M., Upending the uncanny valley. Proceedings 20th National Conference on Artificial Intelligence, AAAI ’05, 1728–1729.
  36. Ishiguro H., Nishio S., Building artificial humans to understand humans. „Journal of artificial organs: the official journal of the Japanese Society for Artificial Organs”, Vol. 10, No. 3, 2007, 133–142, DOI: 10.1007/s10047-007-0381-4.
  37. Jacobsen S., Iversen E., Knutti D., Johnson R., Biggers K., Design of the Utah/M.I.T. Dextrous Hand. Proceedings IEEE International Conference on Robotics and Automation, Vol. 3, 1986, 1520–1532, DOI: 10.1109/ROBOT.1986.1087395.
  38. Jezierski E., Dynamika robotów. Wydawnictwo Naukowo Techniczne WNT, Warszawa, 2006.
  39. Kang H., Zhou H., Chen C., Visual perception and modeling for autonomous apple harvesting. „IEEE Access”, Vol. 8, 2020, 62151–62163, DOI: 10.1109/ACCESS.2020.2984556.
  40. Kasprzak W., Rozpoznawanie obrazów i sygnałów mowy. Oficyna Wydawnicza Politechniki Warszawskiej, 2009.
  41. Kędzierski J., Janiak M., Budowa robota społecznego FLASH. K. Tchoń, C. Zieliński, red., Postępy robotyki, XII Krajowa Konferencja Robotyki, Świeradów Zdrój, 12–16 września 2012, Oficyna Wydawnicza Politechniki Warszawskiej, Prace Naukowe Politechniki Warszawskiej – Elektronika, Vol. 182, 2012, 681–694.
  42. Kędzierski J., Kaczmarek P., Dziergwa M., Tchoń K., Design for a robotic companion. „International Journal of Humanoid Robotics”, Vol. 12, No. 1, 2015, 1–24, DOI: 10.1142/S0219843615500073.
  43. Kędzierski J., Muszyński R., Zoll C., Oleksy A., Frontkiewicz M., EMYS—emotive head of a social robot. „International Journal of Social Robotics”, Vol. 5, 2013, 237–249, DOI: 10.1007/s12369-013-0183-1.
  44. Lim J., Bae H., Oh J., Lee I., Shim I., Jung H., Joe H.M., Sim O., Jung T., Shin S., Joo K., Kim M., Lee K., Bok Y., Choi D.-G., Cho B., Kim S., Heo J., Kim I., Lee J., Kwon I.S., Oh J.-H., Robot system of DRC-HUBO+ and control strategy of team KAIST in DARPA robotics challenge finals. M. Spenko, S. Buerger, K. Iagnemma, (red.), The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue, 27–69, Cham, 2018. Springer International Publishing, DOI: 10.1007/978-3-319-74666-1_2.
  45. Lim J., Lee I., Shim I., Jung H., Joe H., Bae H., Sim O., Oh J., Jung T., Shin S., Joo K., Kim M., Lee K.K., Bok Y., Choi D.-G., Buyoun C., Kim S., Heo J., Kim I., Lee J., Kwon I.S., Oh J.-H., Robot system of DRC-HUBO+ and control strategy of team KAIST in DARPA robotics challenge finals. „Journal of Field Robotics”, Vol. 34, No. 4, 2017, 802–829, DOI: 10.1002/rob.21673.
  46. Long Z., Jiang Q., Tao S., Wen F., Liang C., A systematic review and meta-analysis of robotic gripper. „IOP Conference Series: Materials Science and Engineering”, Vol. 782, 2020, DOI: 10.1088/1757-899X/782/4/042055.
  47. Luo L., Ogawa K., Peebles G., Ishiguro H., Towards a personality AI for robots: Potential colony capacity of a goal-shaped generative personality model when used for expressing personalities via non-verbal behaviour of humanoid robots. „Frontiers in Robotics and AI”, 2022, DOI: 10.3389/frobt.2022.728776.
  48. Lutz W., Sanderson W., Scherbov S., The coming acceleration of global population ageing. „Nature”, Vol. 451, No. 7179, 2008, 716–719.
  49. Madrigal A., Inside waymo’s secret world for training self-driving cars – an exclusive look at how alphabet understands its most ambitious artificial intelligence project. „The Atlantic”, August 23 2017.
  50. Malczyk G., Morecki A., A mathematical model of a flexible manipulator of the elephant’s-trunk-type. RoManSy 6: Proceedings of the 6th CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators, 1987, 198–206, Springer US.
  51. Margheri L., Laschi C., Mazzolai B., Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. „Bioinspiration & Biomimetics”, Vol. 7, No. 2, 2012, DOI: 10.1088/1748-3182/7/2/025004.
  52. Melchiorri C., Kaneko M., Robot Hands, [In:] The handbook of robotics. 2016, 463–480, DOI: 10.1007/978-3-540-30301-5_16.
  53. Meneses A., Yoshikawa Y., Ishiguro H., Effect of synchronous robot motion on human synchrony and enjoyment perception. „Interaction Studies”, Vol. 22, No. 1, 2021, 86–109, DOI: 10.1075/is.18027.men.
  54. Mianowski K., Functional characteristics of a new special gripper with flexible fingers. „Journal of Automation, Mobile Robotics & Intelligent Systems”, Vol. 5, No. 3, 2011.
  55. Mianowski K., Berns K., Hirth J., The artificial hand with elastic fingers for humanoid robot ROMAN. 18th International Conference on Methods and Models in Automation and Robotics (MMAR), 2013, 448–453, DOI: 10.1109/MMAR.2013.6669950.
  56. Moore C., Peshkin M., Colgate J., Cobot implementation of Virtual Paths and 3D Virtual Surfaces, „IEEE Transactions on Robotics and Automation”, Vol. 19, No. 2, 2003, 347–351, DOI: 10.1109/TRA.2003.808866.
  57. Mori M., The uncanny valley. „IEEE Robotics and Automation Magazine”, 2012, 98–100.
  58. Morrison D., Tow A., McTaggart M., Smith R., Kelly-Boxall N., Wade-McCue S., Erskine J., Grinover R., Gurman A., Hunn T., Lee D., Milan A., Pham T., Rallos G., Razjigaev A., Rowntree T., Vijay K., Zhuang Z., Lehnert C., Leitner J., Cartman: The low-cost cartesian manipulator that won the amazon robotics challenge. IEEE International Conference on Robotics and Automation, 2018, 7757–7764, DOI: 10.1109/ICRA.2018.8463191.
  59. Munson G., The rise and fall of Unimation Inc. – story of robotics innovation & triumph that changed the world, Robot Magazine, December 2010.
  60. Park H., Wensing P.M., Kim S., Jumping over obstacles with MIT Cheetah 2. „Robotics and Autonomous Systems”, Vol. 136, 2021, DOI: 10.1016/j.robot.2020.103703.
  61. Patz B., Papelis Y., Pillat R., Stein G., Harper D., A practical approach to robotic design for the DARPA Urban Challenge. „Journal of Field Robotics”, Vol. 25, No. 8, 2008, 528–566, DOI: 10.1002/rob.20251.
  62. Peshkin M.A., Colgate J.E., Wannasuphoprasit W., Moore C.A., Gillespie R.B., Akella P., Cobot architecture. „IEEE Transactions on Robotics and Automation”, Vol. 17, No. 4, 2001, 377–390, DOI: 10.1109/70.954751.
  63. Petrovic K., Picking Robots Address Agriculture’s Labor Shortage Challenge. „Robotics Business Review”, November 5, 2020.
  64. Raibert M.H., Blankespoor K., Nelson G.M., Playter R., BigDog, the rough-terrain quadruped robot. „IFAC Proceedings Volumes”, Vol. 41, No. 2, 2008, 10822–10825, DOI: 10.3182/20080706-5-KR-1001.01833.
  65. Rus D., Tolley M., Design, fabrication and control of soft robots. „Nature”, Vol. 521, May 27 2015, 467–475.
  66. Salisbury J., Roth B., Kinematics and force analysis of articulated mechanical hands. „Journal of Mechanisms, Transmissiona and Automation in Design”, Vol. 105, No. 1, 1983, 35–41, DOI: 10.1115/1.3267342.
  67. Shintake J., Cacucciolo V., Floreano D., Shea H., Soft robotic grippers. „Advanced Materials”, Vol. 30, No. 29, 2018, DOI: 10.1002/adma.201707035.
  68. Stone L., Alphabet’s X launches ‘computational agriculture’ business Mineral. „AI Business”, October 14 2020.
  69. Thrun S., Montemerlo M., Dahlkamp H., Stavens D., Aron A., Diebel J., Fong P., Gale J., Halpenny M., Hoffmann G., Lau K., Oakley C., Palatucci M., Pratt V., Stang P., Strohband S., Dupont C., Jendrossek L.-E., Koelen Ch., Markey Ch., Rummel C., van Niekerk J., Jensen E., Alessandrini P., Bradski G., Davies B., Ettinger S., Kaehler A., Nefian A., Mahoney P., Stanley: The robot that won the DARPA Grand Challenge. „Journal of Field Robotics”, Vol. 23, No. 9, 2006, 661–692, DOI: 10.1002/rob.20147.
  70. Tranzatto M., Mascarich F., Bernreiter L., Godinho C., Camurri M., Khattak S., Dang T., Reijgwart V., Loeje J., Wisth D., Zimmermann S., Nguyen H., Fehr M., Solanka L., Buchanan R., Bjelonic M., Khedekar N., Valceschini M., Jenelten F., Dharmadhikari M., Homberger T., De Petris P., Wellhausen L., Kulkarni M., Miki T., Hirsch S., Montenegro M., Papachristos C., Tresoldi F., Carius J., Valsecchi G., Lee J., Meyer K., Wu X., Nieto J., Smith A., Hutter M., Siegwart R., Mueller M., Fallon M., Alexis K., CERBERUS: Autonomous legged and aerial robotic exploration in the tunnel and urban circuits of the DARPA Subterranean Challenge. „Field Robotics”, 2022, DOI: 10.48550/arXiv.2201.07067.
  71. Urmson C., Baker Ch., Dolan J., Rybski P., Salesky B., Whittaker W., Ferguson D., Darms M., Autonomous driving in traffic: Boss and the Urban Challenge. „AI Magazine”, Vol. 30, No. 2, Summer 2009, 17–28, DOI: 10.1609/aimag.v30i2.2238.
  72. Vincent J., Welcome to the automated warehouse of the future: How british supermarket ocado is using robots to make online grocery shopping faster. „The Verge”, May 8 2018.
  73. Vukobratovic M., Borovac B., Zero-Moment Point – thirty five years of its life. „International Journal of Humanoid Robotics”, Vol. 1, No. 1, 2004, 157–173, DOI: 10.1142/S0219843604000083.
  74. Wang L., Nurzaman S., Iida F., Soft-material robotics. Foundations and Trends in Robotics, Vol. 5, No. 3, 2017, 191–259, DOI: 10.1561/2200000055.
  75. White J., Waymo opens driverless robo-taxi service to the public in phoenix. „Reuters”, October 8 2020.
  76. Zielińska T., Maszyny kroczące. PWN, 2014.
  77. Zielińska T., Novel design and applications of robotics technologies. [In:] History of Service Robots and New Trends, 158–187. IGI Global, 2019, DOI: 10.4018/978-1-5225-5276-5.
  78. Zieliński C., Kornuta T., Stefańczyk M., Szynkiewicz W., Trojanek P., Walęcki M., Języki programowania robotów przemysłowych. „Pomiary Automatyka Robotyka”, Vol. 16, No. 11, 2012, 10–19.