Rola i znaczenie cyfrowych mostków impedancji we współczesnej metrologii

pol Article in Polish DOI: 10.14313/PAR_251/49

send Krzysztof Musioł *, Marian Kampik *, Adam Ziółek **, Maciej Koszarny **, Jolanta Jursza **, Paweł Zawadzki ** * Politechnika Śląska, Wydział Elektryczny, Katedra Metrologii, Elektroniki i Automatyki, ul. Akademicka 10, 44-100 Gliwice ** Główny Urząd Miar, Zakład Elektryczności i Promieniowania, ul. Elektoralna 2, 00-139 Warszawa

Download Article

Streszczenie

W artykule przedstawiono obecne trendy w metrologii impedancyjnej najwyższych dokładności. Opisano rolę cyfrowych niekwantowych mostków impedancyjnych, które w ostatnim dziesięcioleciu są przedmiotem prac rozwojowych w wielu europejskich krajowych instytutach metrologicznych. Przedstawiono dwie struktury mostkowe czteroportowe (tzw. mostki generacyjne i próbkujące), które w ostatnich latach zostały wdrożone do stosowania w krajowych instytutach metrologicznych w Europie. Szczególną uwagę poświęcono cyfrowemu mostkowi impedancyjnemu, rozwijanemu obecnie w Głównym Urzędzie Miar w Warszawie. Zaprezentowano jego schemat ideowy, implementację układową, a także przedstawiono postęp prac związanych z jego doskonaleniem i wdrożeniem go w niedalekiej przyszłości do krajowego systemu miar.

Słowa kluczowe

cyfrowe źródła, komparacja impedancji, krajowe instytuty metrologiczne, mostek impedancyjny, napięcie przemienne, wzorce impedancji

The Role and Importance of Digital Impedance Bridges in Contemporary Metrology

Abstract

The article presents current trends in impedance metrology of the highest accuracy. Attention was paid to digital non-quantum impedance bridges, which have been developed in many European National Metrology Institutes over the last decade. Particular attention in the article was devoted to the digital impedance bridge currently being developed at the Central Office of Measures in Warsaw. The conceptual diagram, system implementation and the progress of work related to the development of this bridge and its implementation in the near future into the national measurement system are presented as well.

Keywords

digital AC voltage sources, impedance bridge, impedance comparison, impedance standards, national metrology institutes

Bibliography

  1. Hernández-Ramírez J., Segundo-Ramírez J., Visairo N., Nuñez C., Application of the Impedance-Based Method in Power Electronics: A Step-by-Step Review, 2021 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, DOI: 10.1109/ROPEC53248.2021.9668073.
  2. Kanoun O. et al., Impedance Spectroscopy: Applications, Advances and Future Trends, „IEEE Instrumentation & Measurement Magazine”, Vol. 25, No. 3, 2022, 11–21, DOI: 10.1109/MIM.2022.9759355.
  3. Thompson A.M., Lampard D.G., A new theorem in electrostatics and its application to calculable standard of capacitance, „Nature”, Vol. 177, No. 888, 1956, DOI: 10.1038/177888a0.
  4. Taylor B.N., Witt T.J., New international electric reference standards based on the Josephson and quantum Hall effects, „Metrologia”, Vol. 26, No. 1, 1989, 47–62, DOI: 10.1088/0026-1394/26/1/004.
  5. Overney F., Jeanneret B., Impedance bridges: from Wheatstone to Josephson, „Metrologia”, Vol. 55, No. 5, 2018, S119–S134, DOI: 10.1088/1681-7575/aacf6c.
  6. Callegaro L., Electrical Impedance: Principles, Measurement, and Application. CRC Press, 2013.
  7. Lee J., Schurr J., Nissila J., Palafox L., Behr R., Kibble B.P., Programmable Josephson Arrays for Impedance Measurements, “IEEE Transactions on Instrumentation and Measurement”, Vol. 60, No. 7, 2011, 2596–2601, DOI: 10.1109/TIM.2011.2117311.
  8. Overney F., Flowers-Jacobs N.E., Jeanneret B., Rufenacht A., Fox A.E., Dresselhaus P.D., Benz S.P., Dual Josephson impedance bridge: towards a universal bridge for impedance metrology, „Metrologia”, Vol. 57, No. 6, 2020, DOI: 10.1088/1681-7575/ab948d.
  9. Overney F., Flowers-Jacobs N.E., Jeanneret B., Rufenacht A., Fox A.E, Underwood J.M, Koffman A.D, Benz S.P., Josephson-based full digital bridge for high-accuracy impedance comparisons, „Metrologia”, Vol. 53, No. 4, 2016, 1045– 1053, DOI: 10.1088/0026-1394/53/4/1045.
  10. Bauer S., Behr R., Hagen T., Kieler O., Lee J., Palafox L., Schurr J., A novel two-terminal-pair pulse-driven Josephson impedance bridge linking a 10 nF capacitance standard to the quantized Hall resistance, „Metrologia”, Vol. 54, No. 2, 2017, 152–160, DOI: 10.1088/1681-7575/aa5ba8.
  11. Bauer S., Behr R., Elmquist R.E., Götz M., Herick J., Kieler O., Kruskopf M., Lee J., Palafox L., Pimsut Y., A four-terminal-pair Josephson impedance bridge combined with a graphene-quantized Hall resistance, „Measurement Science and Technology”, Vol. 32, 2021, DOI: 10.1088/1361-6501/abcff3.
  12. Kampik M., High Performance Digitally Synthesized Source for Very Low-Frequency AC Voltage Calibrator, IEEE Instrumentation & Measurement Technology Conference IMTC 2007, 1–6, DOI: 10.1109/IMTC.2007.379021.
  13. Mašláň S., Šíra M., Skalická T., Bergsten T., Four-Terminal Pair Digital Sampling Impedance Bridge up to 1 MHz, „IEEE Transactions on Instrumentation and Measurement”, Vol. 68, No. 6, 2019, 1860–1869, DOI: 10.1109/TIM.2019.2908649.
  14. Overney F., Jeanneret B., RLC Bridge Based on an Automated Synchronous Sampling System, „IEEE Transactions on Instrumentation and Measurement”, Vol. 60, No. 7, 2011, 2393–2398, DOI: 10.1109/TIM.2010.2100650.
  15. Kučera J, Kovác J., A reconfigurable four terminal-pair digitally assisted and fully digital impedance ratio bridge, „IEEE Transactions on Instrumentation and Measurement”, Vol. 67, No. 5, 2018, 1199–1206, DOI: 10.1109/TIM.2018.2790538.
  16. Ortolano M., Palafox L., Kučera J., Callegaro L., D’Elia V., Marzano M., Overney F., Gülmez G., An international comparison of phase angle standards between the novel impedance bridges of CMI, INRIM and METAS, „Metrologia”, Vol. 55, No. 4, 2018, 499–512, DOI: 10.1088/1681-7575/aabf24.
  17. Ortolano M. et al., A Comprehensive Analysis of Error Sources in Electronic Fully Digital Impedance Bridges, “IEEE Transactions on Instrumentation and Measurement”, Vol. 70, 2021, DOI: 10.1109/TIM.2020.3034115.
  18. Callegaro L., D’Elia V., Kampik M., Kim D.B, Ortolano M., Pourdanesh F., Experiences with a two-terminal-pair digital impedance bridge, „IEEE Transactions on Instrumentation and Measurement”, Vol. 64, No. 6, 2015, 1460–1465, DOI: 10.1109/TIM.2015.2401192.
  19. Kozioł M., Kaczmarek J., Rybski R., Characterization of PXI-based generators for impedance measurement setups, „IEEE Transactions on Instrumentation and Measurement”, Vol. 68, No. 6, 2019, 1806–1813, DOI: 10.1109/TIM.2019.2893715.
  20. Overney F., A. Rufenacht, Braun J., Jeanneret B, Wright P.S., Characterization of Metrological Grade Analog-to-Digital Converters Using a Programmable Josephson Voltage Standard, „IEEE Transactions on Instrumentation and Measurement”, Vol. 60, No. 7, 2011, 2172–2177, DOI: 10.1109/TIM.2011.2113950.
  21. Kučera J, Kovác J, Palafox L., Behr R., Vojáčková L., Characterization of a precision modular sinewave generator, „Measurement Science and Technology”, Vol. 31, No. 6, 2020, DOI: 10.1088/1361-6501/ab6f2e.
  22. Rybski R., Kaczmarek J., Kozioł M., A High-Resolution PXI Digitizer for a Low-Value-Resistor Calibration System, „IEEE Transactions on Instrumentation of Measurement”, Vol. 62, No. 6, 2013, 1783–1788, DOI: 10.1109/TIM.2012.2225958.
  23. 23. SIB53 AIM QuTE Final Publishable JRP Report, June 2017.
  24. Kampik M., Musioł K., Investigations of the high-performance source of digitally synthesized sinusoidal voltage for primary impedance metrology, „Measurement”, Vol. 168, 2021, DOI: 10.1016/j.measurement.2020.108308.
  25. Palafox L., Raso F., Kučera J., Overney F., Callegaro L., Gournay P., Ziółek A., Nissilä J., Eklund G., Lippert T., Gülmez Y., Fleischmann P., Kampik M., Rybski R., AIM QuTE: Automated Impedance Metrology extending the Quantum Toolbox for Electricity, 16th International Congress of Metrology, Paris, France, October 7-10, 2013, DOI: 10.1051/metrology/201311001.
  26. Christensen A., A versatile electrical impedance calibration laboratory based on a digital impedance bridge, 19th International Congress of Metrology, 2019, DOI: 10.1051/metrology/201911002.
  27. Callegaro L., On strategies for automatic bridge balancing, „IEEE Transactions on Instrumentation of Measurement”, Vol. 54, No. 2, 2005, 529–532, DOI: 10.1109/TIM.2004.843126.
  28. Musioł K., Kampik M., Koszarny M., A new sampling- -based four-terminal-pair digital impedance bridge, „Measurement: Sensors”, Vol. 18, 2021, DOI: 10.1016/j.measen.2021.100307.
  29. Musioł K., Kampik M., Metrological triangles in impedance comparisons, „Measurement”, Vol. 148, 2019, DOI: 10.1016/j.measurement.2019.106908.
  30. Musioł K., Koszarny M., Kampik M., Rzodkiewicz W., Zawadzki P., Czteroportowe kondensatory wzorcowe o pojemności z przedziału od 1 nF do 10 nF, „Przegląd Elektrotechniczny”, Vol. 98, Nr 12, 2022, 52–55, DOI: 10.15199/48.2022.12.13.
  31. Musioł K., Koszarny M., Kampik M., Kubiczek K., Ziółek A., Jursza J., A new impedance metrology infrastructure at GUM, 25th IMEKO TC-4 International Symposium on Measurement of Electrical Quantities, September 12-14, 2022, Brescia, Italy, 243–247.
  32. A versatile electrical impedance calibration laboratory based on digital impedance bridges, Final Publishable Report of the EMPIR project 17RPT04 VersICaL, https://www.euramet.org/.
  33. Callegaro L., D’Elia V., Manta F., A setup for linearity measurement of precision AC voltmeters in the audio frequency range, 16th IMEKO TC4 Symposium, Florence, 2008.
  34. Cutkosky R.D., Shields J,Q., The precision measurement of transformer ratios, „IRE Transactions on Instrumentation”, Vol. 9, No. 2, 1960, 243–250, DOI: 10.1109/IRE-I.1960.5006925.
  35. Tran N.T.M., D’Elia V., Callegaro L., Ortolano M., A Capacitance Build-Up Method to Determine LCR Meter Errors and Capacitance Transfer, “IEEE Transactions on Instrumentation and Measurement”, Vol. 69, No. 8, 2020, 5727–5735, DOI: 10.1109/TIM.2019.2960620.
  36. Musioł K., Experimental Study of Digitizers Used in High-Precision Impedance Measurements, „Energies”, Vol. 15, No. 11, 2022, DOI: 10.3390/en15114051.
  37. Hsu J.C., Gong J., Huang C.F., An Automated Permuting Capacitor Device for Calibration of IVDs, „IEEE Transactions on Instrumentation and Measurement”, Vol. 63, No. 9, 2014, 2271–2278, DOI: 10.1109/TIM.2014.2308035.