Measurement of the Junction Temperature of Light-Emitting Diodes Based on the Thermographic Measurement of the Case Temperature

eng Article in English DOI: 10.14313/PAR_258/117

send Krzysztof Dziarski *, Arkadiusz Hulewicz ** * Poznań University of Technology, Institute of Electric Power Engineering, Piotrowo 3A, 60-965 Poznań, Poland ** Poznań University of Technology, Institute of Electrical Engineering and Electronics, Piotrowo 3A, 60-965 Poznań, Poland

Download Article

Abstract

The article describes an indirect infrared thermographic method for measuring the junction temperature of the selected light-emitting diodes (LEDs). It presents the measurement methodology that enables a reliable assessment of this temperature. The finite element method (FEM) used in simulation work is also described. The article addresses the process of determining the coefficient values required for the simulations. It presents the results of simulation work conducted in the SolidWorks environment, the infrared thermographic measurements of the package temperature of the tested LEDs and the corresponding estimated junction temperature values. The reliability of the obtained results was confirmed using the electrical method and measurements with a Pt 1000 sensor.

Keywords

light emitting diode, metrology, thermography

Pomiar temperatury złącza diod elektroluminescencyjnych (LED) na podstawie termograficznego pomiaru temperatury obudowy

Streszczenie

W artykule opisano użycie pośredniego pomiaru termowizyjnego do wyznaczenia temperatury złącza wybranych diod elektroluminescencyjnych (LED). Przedstawiono metodę pomiaru umożliwiającą wiarygodną ocenę tej temperatury oraz zastosowaną w pracach symulacyjnych metodę elementów skończonych (MES). Omówiono proces wyznaczania wartości współczynników niezbędnych do przeprowadzenia symulacji. Zaprezentowano wyniki badań symulacyjnych wykonanych w środowisku SolidWorks, pomiary termograficzne temperatury obudowy badanych diod LED oraz odpowiadające im oszacowane wartości temperatury złącza. Wiarygodność uzyskanych wyników potwierdzono metodą elektryczną oraz pomiarami z wykorzystaniem czujnika Pt 1000.

Słowa kluczowe

dioda elektroluminescencyjna, metrologia, termografia

Bibliography

  1. Chhajed S, Xi Y., Gessmann Th., Xi Y.-Q., Shah J.M., Kim J.K., Schubert E.F., Junction temperature in light-emitting diodes assessed by different methods, Proceedings of SPIE, Vol. 5739, 2005, DOI: 10.1117/12.593696.
  2. Vaskuri A., Kärhä P., Baumgartner H., Kantamaa O., Pulli T., Poikonen T., Ikonen E., Relationships between junction temperature, electroluminescence spectrum and ageing of light-emitting diodes, “Metrologia”, Vol. 55, No. 2, 2018, 86–95, DOI: 10.1088/1681-7575/aaaed2.
  3. Dziarski K, Hulewicz A, Kuwałek P, Wiczyński G., Methods of Measurement of Die Temperature of Semiconductor Elements: A Review, “Energies”, Vol. 16, No. 6, 2023, DOI: 10.3390/en16062559.
  4. Cengiz C., Azarifar M., Arik M., A Critical Review on the Junction Temperature Measurement of Light Emitting Diodes, “Micromachines”, Vol. 13, No. 10, 2022, DOI: 10.3390/mi13101615.
  5. Więcek B., De Mey G., Thermovision in Infrared–Basics and Applications, Measurement Automation Monitoring Publishing House: Warszawa, Poland, 2011.
  6. Minkina W., Pomiary termowizyjne – przyrządy i metody. Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2004, ISBN 83-7193-237-5.
  7. Hulewicz A., Dziarski K., Dombek G., The Solution for the Thermographic Measurement of the Temperature of a Small Object, “Sensors”, Vol. 21, No. 15, 2021, DOI: 10.3390/s21155000.
  8. Chang K.S., Yang S.C., Kim J.-Y., Kook M.H., Ryu S.Y., Choi H.Y., Kim G.H., Precise Temperature Mapping of GaN-Based LEDs by Quantitative Infrared Micro-Thermography, “Sensors”, Vol. 12, No. 4, 2012, 4648–4660, DOI: 10.3390/s120404648.
  9. Cheng H-Ch., Lin J.-Y., Chen W.-H., On the thermal characterization of an RGB LED-based white light module, “Applied Thermal Engineering”, Vol. 38, 2012, 105–116, DOI: 10.1016/j.applthermaleng.2012.01.014
  10. Lee D., Choi H., Jeong S., Jeon C.H., Lee D., Lim J., Byon C., Choi J., A study on the measurement and prediction of LED junction temperature, “International Journal of Heat and Mass Transfer”, Vol. 127 (B), 2018, 1243–1252, DOI: 10.1016/j.ijheatmasstransfer.2018.07.091.
  11. JM Lasance C., Poppe A., Thermal Management for LED Applications, Springer, 2014, DOI: 10.1007/978-1-4614-5091-7.
  12. Rongier C., Gilblas R., Le Maoult Y., Belkessam S., Schmidt F., Infrared thermography applied to the validation of thermal simulation of high luminance LED used in automotive front lighting, “Infrared Physics & Technology”, Vol. 120, 2022, DOI: 10.1016/j.infrared.2021.103980.
  13. Tang-Kwor E., Mattei S., Emissivity measurements for nextel velvet coating 811-21 between –36 °C and 82 °C, 15th European Conference on Thermophysical Properties, Vol. 33, 1999, 551–556.
  14. Baillis D., Coquard R., Randrianalisoa J.H., Dombrovsky L.A., Viskanta R., Thermal radiation properties of highly porous cellular foams, “Special Topics & Reviews in Porous Media: An International Journal”, Vol. 4, No. 2, 2013, 111–136, DOI: 10.1615/SpecialTopicsRevPorousMedia.v4.i2.20.
  15. Minkina W., Dudzik S., Infrared Thermography Errors and Uncertainties, John Wiley & Sons, 2009, DOI: 10.1002/9780470682234.
  16. Więcek B., Thermovision in infrared – basic and applications. Measurement Automotion Monitoring Publish House, Warszawa 2011.
  17. Kopeć M., Więcek B., AC temperature estimation of power electronic devices using 1D thermal modeling and IR thermography measurements. 15th Quantitative InfraRed Thermography Conference, 2020, DOI: 10.21611/qirt.2020.161.
  18. Dziarski H., Hulewicz A., Dombek G., Drużyński Ł., Indirect Thermographic Temperature Measurement of a Power-Rectifying Diode Die, “Energies”, Vol. 15, No. 9, 2022, DOI: 10.3390/en15093203
  19. Murphy T.W. Jr., Maximum Spectral Luminous Efficacy of White Light, “Journal of Applied Physics”, Vol. 111, No. 10, 2012, DOI: 10.1063/1.4721897.
  20. Ohno Y., Spectral design considerations for white LED color rendering, “Optical Engineering”, Vol. 44, No. 11, 2005, DOI: 10.1117/1.2130694.
  21. Tsonev D., Videv S., Haas H., Light fidelity (Li-Fi): Towards all-optical networking, “Optics Express”, Vol. 25, No. 16, 2017, 18990–19005, DOI: 10.1117/12.2044649.