Sensitivity Limits and Functional Characteristics of Fluxgate Sensors with Rod-Shaped Magnetic Cores

eng Article in English DOI: 10.14313/PAR_244/29

Dominika Kopala *, Anna Ostaszewska-Liżewska *, send Roman Szewczyk ** * Warsaw University of Technology, Institute of Metrology and Biomedical Engineering, sw. A. Boboli 8; PL-02-525 Warsaw, Poland ** Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202, PL-02-486, Warsaw, Poland

Download Article

Abstract

Highly sensitive fluxgate magnetic field sensors with rod-shaped cores are widely used for non-destructive testing as well as for industrial applications. However, in case of both Foerster and Vacquier (two-core sensors configurations), fluxgate sensors sensitivity is directly connected with the relative magnetic permeability of the sensor’s core. It should be highlighted that the magnetic permeability of rod-shaped magnetic cores is driven mainly by the demagnetization factor determined by its slenderness (aspect ratio). The paper presents the analyses of sensitivity limits of fluxgate sensors with rod-shaped cores. On the base of estimations of demagnetization factor specific for fluxgate sensors, it is shown that in case of rod-shaped cores, the sensor’s sensitivity is connected with the shape of the core rather than its relative magnetic permeability. This conclusion is essential during the development and optimization of functional characteristics of fluxgate sensors.

Keywords

demagnetization coefficient, fluxgate sensors, magnetic permeability

Granice czułości i charakterystyki funkcjonalne czujników fluxgate z rdzeniami magnetycznymi w kształcie prętów

Streszczenie

Bardzo czułe sensory pola magnetycznego typu fluxgate z rdzeniami w kształcie prętów są szeroko stosowane w badaniach nieniszczących, jak również w zastosowaniach przemysłowych. Jednak zarówno w przypadku czujnika w konfiguracji Foerster’a, jak i Vacquier’a (obie konfiguracje dotyczą sensorów dwurdzeniowych) ich czułość jest bezpośrednio związana ze względną przenikalnością magnetyczną rdzeni. Należy podkreślić, że o przenikalności magnetycznej prętowych rdzeni magnetycznych decyduje przede wszystkim współczynnik rozmagnesowania określony przez jego smukłość (proporcje). W artykule przedstawiono analizę granic czułości sensorów typu fluxgate z rdzeniami prętowymi. Na podstawie oszacowań współczynnika rozmagnesowania charakterystycznego dla czujników typu fluxgate wykazano, że w przypadku rdzeni prętowych czułość sensora związana jest raczej z kształtem rdzenia niż z jego względną przenikalnością magnetyczną. Wniosek ten jest szczególnie ważny podczas opracowywania i optymalizacji charakterystyk funkcjonalnych czujników fluxgate.

Słowa kluczowe

czujniki fluxgate, przenikalność magnetyczna, współczynnik demagnetyzacji

Bibliography

  1. Claycomb J.R., Brazdeikis A., Le M., Yarbrough R.A., Gogoshin G., Miller J.H., Nondestructive testing of PEM fuel cells, “IEEE Transactions on Applied Superconductivity”, Vol. 13, No. 2, 2003, 211–214, DOI: 10.1109/TASC.2003.813687.
  2. Dibben D.C., Metaxas R., A comparison of the errors obtained with Whitney and linear edge elements, “IEEE Transactions on Magnetics”, Vol. 13, No. 2, 1997, 1524– 1527, DOI: 10.1109/20.582551.
  3. Gaffney C., Gaffney V., Cuttler R., Yorston R., Initial results using GPS navigation with the Foerster magnetometer system at the World Heritage site of Cyrene, Libya. “Archaeological Prospection”, Vol. 15, No. 2, 2008, 151–156, DOI: 10.1002/arp.330.
  4. Gazda P., Szewczyk R., Novel Giant Magnetoimpedance Magnetic Field Sensor, “Sensors”, Vol. 20, No. 3, 2020, DOI: 10.3390/s20030691.
  5. Wei G., Chu J., A transducer made up of fluxgate sensors for testing wire rope defects. “IEEE Transactions on Instrumentation and Measurement”, Vol. 51, No. 1, 2002, 120–124, DOI: 10.1109/19.989914.
  6. Gürkan S., Karapınar M., Doğan S., Detection and Imaging of Underground Objects for Distinguishing Explosives by Using a Fluxgate Sensor Array. “Applied Sciences”, Vol. 9, No. 24, 2019, DOI: 10.3390/app9245415.
  7. Lei J., Lei, C. Zhou Y., Analysis and comparison of the performance of MEMS fluxgate sensors with permalloy magnetic cores of different structures. “Measurement”, Vol. 46, No. 1, 2013, 710–715, DOI: 10.1016/j.measurement.2012.09.009.
  8. Joseph R.I., Ballistic Demagnetizing Factor in Uniformly Magnetized Cylinders. “Journal of Applied Physics”, Vol. 37, No. 13, 1966, DOI: 10.1063/1.1708110.
  9. Joseph R.I., Schlömann E., Demagnetizing Field in Nonellipsoidal Bodies. “Journal of Applied Physics”, Vol. 36, No. 5, 1965, DOI: 10.1063/1.1703091.
  10. Matyuk V.F., Osipov A.A., Central demagnetization factor for bodies with different shapes. II. Rectangular rods. “Russian Journal of Nondestructive Testing”, Vol. 36, 2000, 27–32, DOI: 10.1007/bf02759390.
  11. Morten B., De Cicco G., Prudenziati M., Masoero A., Mihai G., Magnetoresistive thick film sensor for linear displacements. “Sensors and Actuators A: Physical”, Vol. 46, No. 1–3, 1995, 261–265, DOI: 10.1016/0924-4247(94)00902-t.
  12. Note N., Saey T., Gheyle W., Stichelbaut B., Van den Berghe H., Bourgeois J., Van Eetvelde V., Van Meirvenne M., Evaluation of fluxgate magnetometry and electromagnetic induction surveys for subsurface characterization of archaeological features in World War 1 battlefields. “Geoarchaeology”, Vol. 34, No. 2, 2018, 136–148, DOI: 10.1002/gea.21700.
  13. Primdahl F., Brauer P., Merayo J.M.G., Nielsen O.V., The fluxgate ring-core internal field, “Measurement Science and Technology”, Vol. 13, 2002, DOI: 10.1088/0957-0233/13/8/312.
  14. Ripka P., Review of fluxgate sensors. “Sensors and Actuators A: Physical”, Vol. 33, No. 3, 1992, 129-141, DOI: 10.1016/0924-4247(92)80159-z.
  15. Ripka P., Janosek M., Butta M., Billingsley S.W., Wakefield E., Crossfield effect in magnetic sensors. “Sensors”, 2009, DOI: 10.1109/icsens.2009.5398405.
  16. Rui Y., Wang J., Qian C., Liu J., Li X., A new compound algorithm study for Delaunay triangulation construction. 2007, SPIE Proceedings, Vol. 6751, DOI: 10.1117/12.759487.
  17. Sato M., Ishii Y., Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder. “Journal of Applied Physics”, Vol. 66, No. 2, 1989, DOI: 10.1063/1.343481.
  18. Smriglio F., Papale E., Verga F., Piro S., Noninvasive geophysical integrated survey at Madonna del Giglio (Sabine necropolis, Magliano Sabina, Latium, Central Italy). “Archaeological and Anthropological Sciences”, Vol. 12, 2020, DOI: 10.1007/s12520-020-01029-x.
  19. Topal U., Can H., Çelik O.M., Narman A., Kamiş M., Çıtak V., Çakrak D., Sözeri H., Svec P., Design of Fluxgate Sensors for Different Applications from Geology to Medicine. “Journal of Superconductivity and Novel Magnetism”, Vol. 32, 2018, 839–844, DOI: 10.1007/s10948-018-4781-x.
  20. Topal U., Svec P., Can H., Celik F., Birlikseven C., Skorvanek I., Andrejka F., Kunca B., Marcin J., Svec P., Janotova I., Uygur A., Optimization of the Temperature Stability of Fluxgate Sensors for Space Applications. “IEEE Sensors Journal”, Vol. 21, No. 3, 2021, 2749–2756, DOI: 10.1109/jsen.2020.3024547.
  21. Turner S., Hall M.J., Harmon S.A.C., Hillier N., Calibration of a Novel Three-Axis Fluxgate Gradiometer for Space Applications, “IEEE Transactions on Magnetics”, Vol. 51, No. 1, 2015, DOI: 10.1109/tmag.2014.2360614. 
  22. https://ngsolve.org/
  23. https://github.com/ElmerCSC/elmerfem
  24. https://www.paraview.org/
  25. https://www.gnu.org/software/octave/index
  26. https://www.mathworks.com/products/matlab.html