The Effect of Driving Style on Battery Electric Vehicle Range

eng Article in English DOI: 10.14313/PAR_247/85

Piotr Błaszczyk , send Michał Kopeć Lodz University of Technology, Institute of Electrical Power Engineering, 20 Stefanowskiego Street, 90-537 Lodz, Poland

Download Article

Abstract

The demand for electric vehicles is high due to the fact of their low travel costs. Meanwhile, an increase in the car driving range is expected. Hence, this paper examines different concepts related to driving a battery electric vehicle. The driving scenarios were divided into two parts. The first part consisted of four stages: driving in a mixed cycle, charging the battery, driving a very short distance, and driving distances that were within the maximum theoretical range of the batteries. The second part involved driving a distance until the range extender system was activated. The outcomes of these experimental investigations are described and the key findings are presented in the discussion.

Keywords

battery electric vehicle, driving range, driving style, energy consumption

Wpływ stylu jazdy na zasięg samochodu elektrycznego

Streszczenie

Popyt na pojazdy elektryczne jest duży ze względu na niskie koszty podróży. Jednocześnie spodziewany jest wzrost zasięgu. Dlatego w niniejszym artykule przeanalizowano różne koncepcje związane z prowadzeniem pojazdu elektrycznego. Scenariusze jazdy zostały podzielone na dwie części. Pierwsza część składała się z czterech etapów: jazdy w cyklu mieszanym, ładowania pakietu bateryjnego, przejazdu bardzo krótkiego odcinka oraz przejazdu odcinków o różnej długości, mniejszej niż maksymalny zasięg teoretyczny. Druga część polegała na przejechaniu odcinka do momentu aktywacji systemu REx. Wyniki przeprowadzonych badań zostały zaprezentowane, a kluczowe ustalenia przedstawiono w sekcji dyskusji.

Słowa kluczowe

samochód elektryczny, styl jazdy, zasięg pojazdu, zużycie energii

Bibliography

  1. Sehil K., Alamri B., Alqarni M., Sallama A., Darwish M., Empirical Analysis of High Voltage Battery Pack Cells for Electric Racing Vehicles. “Energies”, Vol. 14, No. 6, 2021, DOI: 10.3390/en14061556.
  2. Ehsani M., Gao Y., Gay S.E., Emadi A., Modern Electric Hybrid Electric and Fuel Cell Vehicles; CRC Press: Boca Raton, FL, USA, 2005.
  3. Türler D., Hopkins D., Goudey H., Reducing Vehicle Auxiliary Loads Using Advanced Thermal Insulation and Window Technologies. SAE International, 2003.
  4. Helmers E., Dietz J., Weiss M., Sensitivity Analysis in the Life-Cycle Assessment of Electric vs. Combustion Engine Cars under Approximate Real-World Conditions. “Sustainability”, Vol. 12, No. 3, 2020, DOI: 10.3390/su12031241.
  5. Szumska E., Jurecki R., The Effect of Aggressive Driving on Vehicle Parameters. “Energies”, Vol. 13, No. 24, 2020, DOI: 10.3390/en13246675.
  6. Xian T.F., Soon C.M., Rajoo S., Romagnoli A., A Parametric Study: The impact of Components Sizing on Range Extended Electric Vehicle’s Driving Range. Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore, 25-27 October 2016, DOI: 10.1109/ACEPT.2016.7811511.
  7. Jurecki R.S., Stańczyk T.L., A Methodology for Evaluating Driving Styles in Various Road Conditions. “Energies”, Vol. 14, No. No. 12, 2021, DOI: 10.3390/en14123570.
  8. Benderius O., Markkula G., Wolff K., Wahde M., Driver behaviour in unexpected critical events and in repeated exposures – a comparison. “European Transport Research Review”, Vol. 6, 2014, 51–60, DOI: 10.1007/s12544-013-0108-y.
  9. Bitner-Michalska A., Nolis G.N., Żukowska G., Zalewska A., Poterała M., Trzeciak T., Dranka M., Kalita M., Jankowski P., Niedziecki L., Zachara J., Marcinek M., Wieczorek W., Fluorine-free electrolytes for all-solid sodium-ion batteries based on percyano-substituted organic salts. “Scientific Reports, Vol. 7, 2017, DOI: 10.1038/srep40036.
  10. Marcinek M., Syzdek J., Marczewski M., Piszcz M., Niedziecki L., Kalita M., Plewa-Marczewska A., Bitner A., Wieczorek P., Trzeciak T., Kasprzyk M., Łężak P., Żukowska Z., Zalewska A., Wieczorek W., Electrolytes for Li-ion transport – Review. „Solid State Ionics”, Vol. 276, 2015, 107–126, DOI: 10.1016/j.ssi.2015.02.006.
  11. Sendek-Matysiak E., Grysa K., Assessment of the Total Cost of Ownership of Electric Vehicles in Poland. “Energies”, Vol. 14, No. 16, 2021, DOI: 10.3390/en14164806.
  12. Sendek-Matysiak E., Pyza D., Prospects for the development of electric vehicle charging infrastructure in Poland in the light of the regulations in force. “Archives of Transport”, Vol. 57, No. 1, 2021, 43–58.
  13. Sendek-Matysiak E., Multi-criteria analysis and expert assessment of vehicles with different drive types regarding their functionality and environmental. “Scientific Journal of Silesian University of Technology”, Vol. 102, 2019, 185–195, DOI: 10.20858/sjsutst.2019.102.15.
  14. Szumska E.M., Jurecki R.S., Parameters influencing on electric vehicle range. “Energies”, Vol. 14, No. 16, 2021, DOI: 10.3390/en14164821.
  15. Yadav A.K., Gopakumar K., Krishna R., Umanand L., Bhattacharya S., Jarzyna W., A Hybrid 7-Level Inverter Using Low-Voltage Devices and Operation With Single DC-Link. “IEEE Transactions on Power Electronics”, Vol. 34, No. 10, 2019, 9844–9853, DOI: 10.1109/TPEL.2018.2890371.
  16. Majumder M.G., Rakesh R., Gopakumar K., Al-Haddad K., Jarzyna W., A Fault-Tolerant Five-Level Inverter Topology With Reduced Component Count for OEIM Drives. “IEEE Journal of Emerging and Selected Topics”, Vol. 9, No. 1, 2021, 961–969, DOI: 10.1109/JESTPE.2020.2972056.
  17. Qi J., Lu D.D.-C., Review of battery cell balancing techniques. Australasian Universities Power Engineering Conference (AUPEC), 2014, DOI: 10.1109/AUPEC.2014.6966514.
  18. Rodgers L., Zoepf S., Prenninger J., Analysis the energy consumption of the BMW ActiveE field trial vehicles with application to distance to empty algorithms. “Transportation Research Procedia”. Vol. 4, 2014, 42–54, DOI: 10.1016/j.trpro.2014.11.004.
  19. Rodgers L., Estimating an Electric Vehicle’s “Distance to Empty” Using Both Past and Future Route Information. Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Oregano, 2013.
  20. Li J., Wang F., He Y., Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions. “Sustainability”, Vol. 12, No. 14, 2020, DOI: 10.3390/su122410537.
  21. Goeke D., Schneider M., Routing a mixed fleet of electric and conventional vehicles. “European Journal of Operational Research”, Vol. 245, No. 1, 2015, 81–99, DOI: 10.1016/j.ejor.2015.01.049.
  22. Schneider M., Stenger A., Goeke D., The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations. “Transportation Science”, Vol. 48, No. 14, 2014, 500–520, DOI: 10.1287/trsc.2013.0490.
  23. Erdogan S., Miller-Hooks E., A Green Vehicle Routing Problem. “Transportation Research Part E. Logistics and Transportation Review”, Vol. 48, No. 1, 2012, 100–114, DOI: 10.1016/j.tre.2011.08.001.
  24. Hayes J., de Oliveira R., Vaughan S., Egan M., Simplified Electric Vehicle Power Train Models and Range Estimation. Vehicle Power and Propulsion Conference (VPPC), Chicago, 2011, DOI: 10.1109/VPPC.2011.6043163.
  25. Karbowski D., Pagerit S., Calikns A., Energy Consumption Prediction of a Vehicle along a User-Specified Real-World Trip. “World Electric Vehicle Journal”, Vol. 5, No. 4, 2012, 1109–1120, DOI: 10.3390/wevj5041109.
  26. Minett C., Salomons M., Daamen W., van Arem B., Kujipers S., Eco-routing: Comparing the fuel consumption of different routes between an origin and destination using field test speed profiles and synthetic speed profiles. IEEE Forum on Integrated and Sustainable Transportation System, Vienna, 2011, DOI: 10.1109/FISTS.2011.5973621.
  27. Zhang Y., Wang W., Kobayashi Y., Shirai K., Remaining Driving Range Estimation of Electric Vehicle. IEEE International Electric Vehicle Conference, Greenville, USA, 2012, DOI: 10.1109/IEVC.2012.6183172.
  28. Ferreira J., Monteiro V., Afonso J., Data Mining Approach for Range Prediction of Electric Vehicle. Conference on Future Automotive Technology – Focus Electromobility, Germany, 2012.
  29. Yu H., Tseng F., McGee R., Driving Pattern Identification for EV Range Estimation. IEEE International Electric Vehicle Conference, Greenville, USA, 2012, DOI: 10.1109/IEVC.2012.6183207.
  30. Kopczyński A., Krawczyk P., Lasocki J., Parameters selection of extended-range electric vehicle supplied with alternative fuel. E3S Web of Conference, Vol. 44, 2018, DOI: 10.1051/e3sconf/20184400073.
  31. Styler A., Sauer A., Rottengruber H., Learned Optimal Control of a Range Extender in a Series Hybrid Vehicle. IEEE 18th International Conference on Intelligent Transportation System, Gran Canaria, Spain, 2018, 2612–2618, DOI: 10.1109/ITSC.2015.420.
  32. Miri I., Fotouhi A., Ewin N., Electric vehicle energy modelling and estimation – A case study, “International Journal of Energy Research”, Vol. 45, No. 1, 2020, 501–520, DOI: 10.1002/er.5700.
  33. Chiasserini C.F., Rao R.R., Routing protocols to maximize battery efficiency. MILCOM 2000 Proceedings. 21st Century Military Communications. Architectures and Technologies for Information Superiority (Cat. No.00CH37155), Los Angeles, CA, USA, 2000, DOI: 10.1109/MILCOM.2000.905002.
  34. Jeong K.S., Lee W.Y., Kim C.S., Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics. “Journal of Power Sources”, Vol. 145, No. 2, 2005, 319–326, DOI: 10.1016/j.jpowsour.2005.01.076.
  35. Franke T., Neumann I., Bühler F., Cocron P., Krems J.F., Experiencing Range in an Electric Vehicle: Understanding Psychological Barriers. “Applied Psychology”, Vol. 61, No. 3, 2012, 368–391, DOI: 10.1111/j.1464-0597.2011.00474.x.
  36. Strömberg H., Andersson P., Almgren S., Ericsson J., Karlsson M., Nåbo A., Driver interfaces for electric vehicles. AUI2011 Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Salzburg, Austria, 2011, 177–184, DOI: 10.1145/2381416.2381445.
  37. Cocron J., Expectations and experiences of drivers using an EV: Findings from a German field study. Abstacts of the 27th International Congress of Applied Psychology, Melbourne, Australia, 11–16 July 2010.
  38. Hoffman J., Does use of battery of battery electric vehicles change attitudes and behaviour? Abstacts of the 27th International Congress of Applied Psychology, Melbourne, Australia, 11–16 July 2010.
  39. Kubik A., Turoń K., Stanik Z., Car-sharing systems vehicles versus taxis in urban transport system – legal requirements, technical service, operation. International Conference on Traffic and Transport Engineering. ICTTE, Belgrade, Serbia, 27–28 September 2018, 923–930.
  40. Hansen I., Pachl J., Railway Timetabling and Operations, 2nd ed.; Eurailpress: Hamburg, Germany, 2014.
  41. Croce A.I., Musolino G., Rindone C., Vitetta A., Traffc and Energy Consumption Modelling of Electric Vehicles: Parameter Updating from Floating and Probe Vehicle Data. “Energies”, Vol. 15, No. 1, 2022, DOI: 10.3390/en15010082.
  42. Ondruska P., Posner I., Probabilistic Attainability Maps: Effciently Predicting Driver-Specific Electric Vehicle Range. IEEE Intelligent Vehicles Symposium (IV), 2014, DOI: :10.1109/IVS.2014.6856572.
  43. Liu K., Yamamoto T., Morikawa T., Impact of road gradient on energy consumption of electric vehicles. “Transportation Research Part D. Transport and Environment”, Vol. 54, 2017, 74-81, DOI: 10.1016/j.trd.2017.05.005.
  44. Lu L., Han X., Li J., Hua J., Ouyang M., A review on the key issues for lithium-ion battery management in electric vehicles. “Journal of Power Sources”, Vol. 226, 2013, 272–288, DOI: 10.1016/j.jpowsour.2012.10.060.
  45. BMW i3. www.bmw.pl/i3 (accessed on 25 February 2022).
  46. LE-03MW F&F. www.tme.com/ca/en/details/le-03mw/energy-meters/f-f/ (accessed on 25 February 2022).
  47. BMW. BMW i3 Contents A-Z; Poland, 2008; pp. 1–257.