Laserowy pomiar geometrii ścieżki druku 3D
Streszczenie
Praca przedstawia opis stanowiska badawczego do bezdotykowego pomiaru geometrii powierzchni, uzyskanych w trakcie nakładania kolejnych warstw druku 3D metodą MEX. Stanowisko bazowało na 6-osiowym, hybrydowym centrum obróbkowym wyposażonym w głowicę drukującą, laser pomiarowy oraz kamerę termowizyjną. Badania wykonano dla różnych rozmiarów dysz głowicy drukującej, szybkości nakładania ścieżki oraz strategii budowy kolejnych warstw. Uzyskane wyniki pomiarów pozwalają lepiej zrozumieć procesy formowania powierzchni zewnętrznych drukowanych części i mogą być podstawą do budowy dokładniejszych modeli predykcyjnych w wytwarzaniu przyrostowym. Możliwość realizacji druku 3D na obrabiarce wieloosiowej otwiera nowe obszary badań i potencjalnie, nowe perspektywy optymalizacji strukturalnej i parametrycznej operacji druku 3D.
Słowa kluczowe
centra hybrydowe, druk 3D, metoda MEX, OMM, optymalizacja druku 3D, pomiary laserowe, szum pomiarowy
Laser Measurement of 3D Printing Path Geometry
Abstract
The study presents a description of a research setup designed for non-contact measurement of surface geometry formed during the deposition of successive layers in MEX 3D printing. The setup was based on a six-axis hybrid machining center equipped with a printing head, a laser sensor, and a thermal imaging camera. The experiments were conducted for various nozzle sizes of the printing head, different path-deposition speeds, and multiple layer-construction strategies. The obtained measurement results provide a deeper understanding of the mechanisms governing the formation of outer surfaces in printed parts and may serve as a basis for developing more accurate predictive models in additive manufacturing. The capability to perform 3D printing on a multi-axis machine tool opens new areas of research and, potentially, new opportunities for structural and parametric optimization of 3D printing processes.
Keywords
3D printing optimization, fused filament fabrication, hybrid centers, laser measurements, measuring noise
Bibliography
- Dehghan S., Karganroudi S.S., Echchakoui S., Barka N., The Integration of Additive Manufacturing into Industry 4.0 and Industry 5.0: A Bibliometric Analysis (Trends, Opportunities, and Challenges), “Machines”, Vol. 13, No. 1, 2025, DOI: 10.3390/machines13010062.
- Bigliardi B., Bottani E., Gianatti E., Monferdini L., Pini B., Petroni A., Sustainable Additive Manufacturing in the context of Industry 4.0: A Literature Review, “Procedia Computer Science”, Vol. 232, 2024, 766–774, DOI: 10.1016/j.procs.2024.01.076.
- Hegab H., Khanna N., Monib N., Salem A., Design for sustainable additive manufacturing: A review, “Sustainable Materials and Technologies”, Vol. 35, 2023, DOI: 10.1016/j.susmat.2023.e00576.
- Shah H.H., Tregambi C., Bareschino F., Pepe F., Environmental and Economic Sustainability of Additive Manufacturing: A Systematic Literature Review, “Sustainable Production and Consumption”, Vol. 51, 2024, 628–643, DOI: 10.1016/j.spc.2024.10.012.
- Kunovjanek M., Knofius N., Reiner G., Additive Manufacturing and Supply Chains – A Systematic Review, “Production Planning & Control”, Vol. 33, No. 13, 2022, DOI: 10.1080/09537287.2020.1857874.
- Jiang J.C., Xu X., Rui W., Jia Z., Ping Z., Line width mathematical model in fused deposition modelling for precision manufacturing, E3S Web of Conferences 231, 2021, DOI: 10.1051/e3sconf/202123103003.
- Hebda M., McIlroy C., Whiteside B., Caton-Rose F., Coates F., A method for predicting geometric characteristics of polymer deposition during fused-filament-fabrication, “Additive Manufacturing”, Vol. 27, 2019, 99–108, DOI: 10.1016/j.addma.2019.02.013.
- Shi X., Sun Y., Tian H., Abhilash P.M., Luo X., Liu H., Material Extrusion Filament Width and Height Prediction via Design of Experiment and Machine Learning, “Micromachines”, Vol. 14, No. 11, 2023, DOI: 10.3390/mi14112091.
- Gharehpapagha B., Dolen M., Yaman U., Investigation of Variable Bead Widths in FFF Process, “Procedia Manufacturing”, Vol. 38, 2019, 52–59, DOI: 10.1016/j.promfg.2020.01.007.
- Oskolkov A.A., Bezukladnikov I.I., Trushnikov D.N., Mathematical Model of the Layer-by-Layer FFF/FGF Polymer Extrusion Process for Use in the Algorithm of Numerical Implementation of Real-Time Thermal Cycle Control, “Polymers”, Vol. 15,No. 23, 2023, DOI: 10.3390/polym15234518.
- Nath P., Olson J.D., Mahadevan S., Lee Y.-T.T., Optimization of Fused Filament Fabrication Process Parameters under Uncertainty to Maximize Part Geometry Accuracy, “Additive Manufacturing”, Vol. 35, 2020, DOI: 10.1016/j.addma.2020.101331.
- Mertkan İ.A., Tezel T., Kovan V., Improving surface and dimensional quality with an additive manufacturing-based hybrid technique, “The International Journal of Advanced Manufacturing Technology”, Vol. 128, 2023, 1957–1963, DOI: 10.1007/s00170-023-12055-z.
- Pascu S., Balc N., Process parameter optimization for hybrid manufacturing of PLA components with improved surface quality, “Polymers”, Vol. 15, No. 17, 2023, DOI: 10.3390/polym15173610.
- Chohan J.S., Singh R., Pre and post processing techniques to improve surface characteristics of FDM parts: A state of art review and future applications, “Rapid Prototyping Journal”, Vol. 23, 2017, 495–513, DOI: 10.1108/RPJ-05-2015-0059.
- Golhin A.P., Tonello R., Frisvad J.R., Grammatikos S., Strandlie A., Surface Roughness of As-Printed Polymers: A Comprehensive Review, “The International Journal of Advanced Manufacturing Technology”, Vol. 127, 2023, 987–1043, DOI: 10.1007/s00170-023-11566-z.
- Isa M.A., Lazoglu I., Five-Axis Additive Manufacturing of Freeform Models Through Buildup of Transition Layers, “Journal of Manufacturing Systems”, Vol. 50, 2019, 69–80, DOI: 10.1016/j.jmsy.2018.12.002.
- Bouzaglou O., Golan O., Lachman N., Process Design and Parameters Interaction in Material Extrusion 3D Printing: A Review, “Polymers”, Vol. 15, No. 10, 2023, DOI: 10.3390/polym15102280.
- Triantaphyllou A. et al., Surface texture measurement for additive manufacturing, “Surface Topography: Metrology and Properties”, Vol. 3, No. 2, 2015, DOI: 10.1088/2051-672X/3/2/024002.
- Kechagias J., Chaidas D., Vidakis N., Salonitis K., Vaxevanidis N.M., Key Parameters Controlling Surface Quality and Dimensional Accuracy: A Critical Review of FFF Process, “Materials and Manufacturing Processes”, Vol. 37, No. 9, 2022, 963–984, DOI: 10.1080/10426914.2022.2032144.
- Dey A., Yodo N., A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics, “Journal of Manufacturing and Materials Processing”, Vol. 3, No. 3, 2019, DOI: 10.3390/jmmp3030064.
- Jiang X., J., Gao F., Martin H., Williamson J., Li D., On-machine metrology for hybrid Machining, Hybrid Machining: Theory, Methods, and Case Studies, edited by: Luo, X., Qin, Y., Elsevier Science & Technology, 2018, DOI: 10.1016/B978-0-12-813059-9.00010-5.
- Knauer M.C., Richter C., Häusler G., 3D sensor zoo – Species and natural habitats, “Laser Technik Journal”, Vol. 3, No. 1, 2006, 33–37, DOI: 10.1002/latj.200790081.
- Lishchenko N., O’Donnell G.E., Culleton M., Contactless method for measurement of surface roughness based on a chromatic confocal sensor, “Machines”, Vol. 11, No. 8, 2023, DOI: 10.3390/machines11080836.
- Fu S., Kor W.S., Cheng F., Seah L.K., In-situ measurement of surface roughness using chromatic confocal sensor, “Procedia CIRP”, Vol. 94, 2020, 780–784, DOI: 10.1016/j.procir.2020.09.133.
- Seyler T., Engler J., Beckmann T. et al., HoloPort – design and integration of a digital holographic 3-D sensor in machine tools, “Journal of sensors and sensor systems”, Vol. 9, 2020, 33–41, DOI: 10.5194/jsss-9-33-2020.
- Kim M.K., Lee I.H., Kim H.-C., Effect of Fabrication Parameters on Surface Roughness of FDM Parts, “International Journal of Precision Engineering and Manufacturing”, Vol. 19, 2018, 137–142, DOI: 10.1007/s12541-018-0016-0.
- Badarinath R., Prabhu V., Real-Time Sensing of Output Polymer Flow Temperature and Volumetric Flowrate in Fused Filament Fabrication Process, “Materials”, Vol. 15, No. 2, 2022, DOI: 10.3390/ma15020618.
- Lendvai L., Fekete I., Rigotti D., Pegoretti A., Experimental Study on the Effect of Filament-Extrusion Rate on the Structural, Mechanical and Thermal Properties of Material Extrusion 3D-Printed Polylactic Acid (PLA) Products, “Progress in Additive Manufacturing”, Vol. 10, 2025, 619–629, DOI: 10.1007/s40964-024-00646-5.
- Pranzo D., Larizza P., Filippini D., Percoco G., Extrusion-Based 3D Printing of Microfluidic Devices for Chemical and Biomedical Applications: A Topical Review, “Micromachines”, Vol. 9, No. 8, 2018, DOI: 10.3390/mi9080374.
- Comminal R., Serdeczny M.P., Pedersen D.B., Spangenberg J., Numerical Modeling of the Strand Deposition Flow in Extrusion-Based Additive Manufacturing, “Additive Manufacturing”, Vol. 20, 2018, 68–76, DOI: 10.1016/j.addma.2017.12.013.
- Stryczek R., Wyrobek K., Projektowanie operacji druku 3D metodą FFF, Uniwersytet Bielsko-Bialski, 2022.
- Hebda M., McIlroy C., Whiteside B., Caton-Rose F., Coates F., A method for predicting geometric characteristics of polymer deposition during fused-filament-fabrication, “Additive Manufacturing”, Vol. 27, 2019, 99–108, DOI: 10.1016/j.addma.2019.02.013.
- Wang P., Zou B., Ding S., Modeling of surface roughness based on heat transfer considering diffusion among deposition filaments for FDM 3D printing heat-resistant resin, “Applied Thermal Engineering”, Vol. 161, 2019, DOI: 10.1016/j.applthermaleng.2019.114064.
- Dobrowolski T., Tomasik J., Tandecka K., Magdziak M., Reizer P., Szum pomiarowy jako składowa niepewności pomiarów struktury geometrycznej powierzchni, „Mechanik”, Nr 12, 2018, DOI: 10.17814/mechanik.2018.12.202.
