Projektowanie adaptacyjnego regulatora modalnego dla nieliniowego modelu statku wiertniczego
Streszczenie
W artykule rozważa się problem syntezy układu dynamicznego pozycjonowania statku wiertniczego opisanego nieliniowym modelem dynamicznym o wielu wejściach i wielu wyjściach (MIMO). Proponowana metoda syntezy sterowania bazuje na strukturze z liniowym regulatorem modalnym o strojonych parametrach wyliczanych na podstawie linearyzacji modelu obiektu w wybranych nominalnych punktach jego pracy. Główny problem praktycznego wykorzystania tej metody związany jest z odpowiednim wyborem punktów pracy biorących udział w syntezie regulatora oraz sposobami ograniczania ich ilości. Liczba przyjętych punktów pracy oraz odpowiednie określenie sygnałów pomocniczych, na podstawie których definiowane są te punkty, mogą w znaczący sposób wpływać na uzyskiwaną jakość sterowania. W artykule zaproponowano prosty sposób wyboru nominalnych punktów pracy na podstawie trzech niezależnych sygnałów pomocniczych. Działanie zaproponowanego układu sterowania zilustrowano przykładowymi wynikami symulacyjnymi pozycjonowania statku dla różnych warunków początkowych.
Słowa kluczowe
sterowanie adaptacyjne, sterowanie modalne, układy dynamicznego pozycjonowania, układy nieliniowe, wielowymiarowe układy sterowania
Design of an Adaptive Pole Placement Controller for a Nonlinear Drilling Vessel Model
Abstract
The article presents a dynamic positioning system for a drilling vessel described by a nonlinear MIMO model. The proposed control method is based on a structure with a linear pole placement controller with stepwise switchable parameter values. The controller synthesis is carried out by linearization of the nonlinear plant model at its operating points. From a practical point of view, the main challenge in using this method is the appropriate selection of operating points for controller synthesis and minimizing their number. The number of selected operating points, as well as the proper definition of auxiliary signals on which these points are based, can significantly affect the resulting control quality. The article proposes a simple method for selecting nominal operating points based on three independent auxiliary signals. The operation of the proposed control system is illustrated with example simulation results of vessel positioning under different initial conditions.
Keywords
adaptive control, dynamic positioning systems, multivariable control systems, nonlinear systems, pole placement control
Bibliography
- Witkowska A., Śmierzchalski R., Adaptive Backstepping Tracking Control for an over–Actuated DP Marine Vessel with Inertia Uncertainties, “International Journal of Applied Mathematics and Computer Science”, Vol. 28, No. 4, 2018, 679–693, DOI: 10.2478/amcs-2018-0052.
- Witkowska A., Rynkiewicz T.N., Dynamically Positioned Ship Steering Making Use of Backstepping Method and Artificial Neural Networks, “Polish Maritime Research”, Vol. 25, No. 4, 2018, 5–12, DOI: 10.2478/pomr-2018-0126.
- Zwierzewicz Z., Nonlinear Adaptive Tracking-Control Synthesis for General Linearly Parametrized Systems, “Automation and Robotics”, I-Tech Education and Publishing, 2008, DOI: 10.5772/6116.
- Huba M., Skogestad S., Fikar M., Hovd M., Johansen T.A., Rohal-Ilkiv B., Selected Topics on Constrained and Nonlinear Control, Workbook Dolný Kubín, Slovakia, ROSA, 2011.
- Khalil H.K., Nonlinear systems, Prentice Hall, 2001.
- Fabri S.G., Kadirkamanathan V., Functional Adaptive Control, An Intelligent Systems Approach, 2001, DOI: 10.1007/978-1-4471-0319-6.
- Gierusz W., Rybczak M., Effectiveness of Multidimensional Controllers Designated to Steering of the Motions of Ship at Low Speed, “Sensors”, Vol. 20, No. 12, 2020, DOI: 10.3390/s20123533.
- Gierusz W., The H2 and Robust Hinf Regulators Applied to Multivariable Ship Steering, “TransNav: International Journal on Marine Navigation and Safety of Sea Transportation”, Vol. 3, No. 4, 2009, 431–440.
- Madusanka N.S., Fan Y., Yang S., Xiang X., Digital Twin in the Maritime Domain: A Review and Emerging Trends, “Journal of Marine Science and Engineering”, Vol. 11, No. 5, 2023, DOI: 10.3390/jmse11051021.
- Bańka S., Brasel M., Dworak P., Latawiec K.J., Switched-structure of linear MIMO controllers for positioning of a drillship on a sea surface, 15th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, 2010, 249–254, DOI: 10.1109/MMAR.2010.5587228.
- Dworak P., A reduction of a controller set of switched controller for positioning of a drillship on a sea surface, 17th International Conference on Methods & Models in Automation & Robotics (MMAR), Miedzyzdroje, Poland, 2012, 325–330, DOI: 10.1109/MMAR.2012.6347897.
- Bańka S., Dworak P., Jaroszewski K., Linear adaptive structure for control of a nonlinear MIMO dynamic plant, “International Journal of Applied Mathematics and Computer Science”, Vol. 23, No. 1, 2013, 47–63, DOI: 10.2478/amcs-2013-0005.
- Bańka S., Dworak P., Jaroszewski K., Design of a multivariable neural controller for control of a nonlinear MIMO plant, “International Journal of Applied Mathematics and Computer Science”, Vol. 24, No. 2, 2014, 357–369, DOI: 10.2478/amcs-2014-0027.
- Dworak P., Jaroszewski K., Neural networks for a dynamic decoupling of a nonlinear MIMO dynamic plant, 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 2015, 788–793, DOI: 10.1109/MMAR.2015.7283976.
- Brasel M., Adaptive LQR control system for the nonlinear 4-DoF model of a container vessel, 18th International Conference on Methods & Models in Automation & Robotics (MMAR), Miedzyzdroje, Poland, 2013, 711–716, DOI: 10.1109/MMAR.2013.6669999.
- Brasel M., A gain-scheduled multivariable LQR controller for hybrid excitation synchronous machine, 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 2015, 655–658, DOI: 10.1109/MMAR.2015.7283952.
- Wise D.A., English J.W., Tank and wind tunnel tests for a drill-ship with dynamic position control, Offshore Technology Conference. No. OTC 2345, Dallas, Texas, 1975, DOI: 10.4043/2345-MS.
- Pen C.-L., Chang W.-J., Lin Y.-H., Fuzzy Controller Design Approach for a Ship’s Dynamic Path Based on AIS Data with the Takagi-Sugeno Fuzzy Observer Model, “Journal of Marine Science and Engineering”, Vol. 11, No. 6, 2023, DOI: 10.3390/jmse11061181.
- Zheng M., Zhou Y., Yang S., Robust Fuzzy Sampled-Data Control for Dynamic Positioning Ships, “Journal of Shanghai Jiaotong University (Science)”, Vol. 23, 2018, 209–217, DOI: 10.1007/s12204-018-1931-z.
- Chang W.-J., Chen G.-J., Yeh Y.-L., Fuzzy Control of Dynamic Positioning Systems for Ships, “Journal of Marine Science and Technology”, Vol. 10, No. 7, 2002, 47–53, DOI: 10.51400/2709-6998.2300.
